Измеритель LOW ESR конденсаторов. Радиотехника, электроника и схемы своими руками

При ремонте техники специалисты-радиомеханики сталкиваются с различными проблемами - повреждённые дорожки на платах, окисление, выгоревшие элементы, вздувшиеся конденсаторы. Эти неисправности прекрасно видны при первичном осмотре аппаратуры и устранить их с помощью самых базовых инструментов любого инженера не составляет труда. Но есть случаи, в которых визуального осмотра недостаточно.

Конденсаторы бывают разной ёмкости, как очень большой (4000, 10000 мкФ), так и очень малой (0,33 мкФ, например, такие детали активно используются при сборке комплектующих различной оргтехники). И если вздутие верхней крышки первых отлично заметно из-за их размеров, то со вторыми выявление их неисправности может доставить немало проблем.

В этом поможет простой прибор для проверки конденсаторов - ESR-метр . Своими руками его изготовить несложно, имея достаточные познания в схемотехнике. Он может быть как самостоятельным устройством, так и выполнен в виде приставки к цифровому мультиметру . С его помощью можно легко установить такие неисправности, как пробой и высыхание.

Электролитические конденсаторы имеют ряд параметров, важных для их правильной работы в схеме устройства. Это и его ёмкость, и сопротивление диэлектрика между выводами и корпусом, и собственная индуктивность , эквивалентное последовательное сопротивление или, на американский манер, Equivalent Series Resistance. ESR - это сопротивление обкладок конденсатора и его ножек, которыми он припаивается к плате, выводов.

Существуют специальные формулы для расчёта этого показателя, но ими в реальной практике никто не пользуется. Гораздо проще собрать прибор для его измерения, и полученные результаты сверять с таблицей ESR электролитических конденсаторов, в которой приведены показатели в миллиомах, в зависимости от характеристик деталей - ёмкости и поддерживаемого напряжения.

Конденсаторы используются практически повсюду. Ни одна схема устройства, обладающего хоть минимальной сложностью, не обходится без них.

В персональных компьютерах они встречаются в блоках питания, мониторах, около важных узлов материнских плат - сетевых и звуковых микросхем, в системе питания процессора, южного и северного мостов, оперативной памяти.

В акустических системах и сетевом оборудовании (роутерах, коммутаторах, например) они встречаются около усилителей и LAN-портов. Все они обеспечивают стабильное питание этих элементов, а малейшие проблемы с питанием, как известно, могут привести как к проблемам в работе - зависаниям, торможению, так и к банальному отказу работать.

Высохшие и пробитые конденсаторы невозможно обнаружить простым осмотром, поэтому именно измеритель ESR, может установить причину неисправности. Для этого детали, на которые пало подозрение, выпаиваются с платы и проверяются прибором. Проверять их без выпаивания не рекомендуется - показатели в этом случае могут быть слишком неточными. Если показатель сопротивления слишком высок, компонент должен быть заменён аналогом с наиболее низким ESR.

Основные элементы устройства

В основе схемы ESR-метра лежит микросхема генератора импульсов типа К561ЛН2, работающая на частоте до 120 кГц. Для дополнительного удобства саму микросхему можно не впаивать напрямую в плату, а использовать специальную панель с необходимым количеством ножек. Это позволит оперативно сменить вышедшую из строя деталь и заменить её без дополнительных операций с паяльником и отсосом припоя. В качестве аналога этого генератора можно использовать похожий по характеристикам К1561ЛН2.

Настройка частоты выполняется цепью, состоящей из резистора и конденсатора. Регулировка и настройка измерения ESR осуществляется подстроечным резистором.

В качестве питания используется либо стандартная CR2032, выдающая напряжение до 3 вольт, либо, если этого не хватает для работы, аккумуляторная батарейка на 9 вольт, подключаемая через специальную клемму (такие можно найти в некоторых часах с автономным питанием, например, или в старых батарейках типа Крона). В состав измерителя переменного напряжения входит мультиметр, который необходимо перевести в соответствующий режим, и германиевые диоды.

Сборку тестера конденсаторов можно производить как на макетной плате размером примерно 4 на 6 сантиметров, так и на специальных печатных платах. Второй вариант получится немного дороже, но его преимуществом является наличие на плате обозначений всех нужных элементов и дорожек, их соединяющих.

Печатные платы изготавливаются из фольгированного текстолита и перед проведением монтажа элементов контакты на них необходимо залудить припоем.

При использовании макетных плат, размещение элементов и их соединение производится самостоятельно. Для создания схемы используются провода достаточной толщины с фторопластовой изоляцией, чтобы предотвратить их повреждение при тепловом воздействии.

В качестве щупов можно использовать как покупные, так и самодельные. Во втором случае необходимо самостоятельно позаботиться о хорошей проводящей способности используемого материала и достаточной толщине провода, идущего к мультиметру. Использовать длинные провода, более 10 сантиметров, не рекомендуется.

Возможные недостатки и замечания по работе этого устройства:

  1. При нестабильном питании от батарейки возможны сильные отклонения по точности измерений, следует не забывать периодически проверять батарейку мультиметром и не допускать её разряда больше, чем на 1 вольт.
  2. Даже при полностью исправной батарейке, прибор, выполненный таким образом, не претендует на звание высокоточного. Его можно использовать как некий индикатор работоспособности элементов и определить подойдёт ли конденсатор для установки или замены.

Первый и второй недостатки имеют общее решение - достаточно установить в схему стабилизатор, питающийся напрямую от батарейки, и два конденсатора. Это повышает надёжность и точность прибора, что даёт возможность отбрасывать ситуации, при которых, если у измеряемого элемента сопротивление было слишком малым, мультиметр сигнализировал о коротком замыкании вместо ожидаемого значения.

Порядок калибровки прибора

После монтажа устройства на плате и первичных тестов, его необходимо откалибровать. Для этого понадобится осциллограф и набор резисторов для подстройки номиналом от 1 до 80 Ом. Порядок калибровки:

  1. Измеряем осциллографом частоту на щупах. Она должна быть в пределах 120-180 кГц. При более низкой или более высокой частоте она корректируется подбором резистора из набора.
  2. Подсоединяем мультиметр к щупам, выбираем режим измерения в милливольтах.
  3. Резистор в 1 Ом подключаем к щупам. С помощью подстроечного резистора в схеме выставляем на мультиметре значение напряжения в 1 милливольт.
  4. Подключаем следующий по номиналу резистор, не меняя значение, и записываем показания мультиметра. Повторяем со всем набором и составляем табличку.

После калибровки прибором можно пользоваться. Он поможет в обнаружении неисправностей, связанных с реактивным сопротивлением. Их невозможно диагностировать другим способом.

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель - тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR - mikro». Остановило то, что уж больно здорово хвалили - «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось - выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось - не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» - со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества - пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой - далеко не миниатюрный.

Обратная сторона - плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал - способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления - резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем - соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее - враг хорошего» трогать его не позволил - сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Давно хотел сделать устройство для проверки электролитов, которое бы наряду с ESR измеряло и емкость. Все, что попадалось в и-нете на эту тему, чем-нибудь да не устраивало. Опробовав некоторые идеи, остановился на варианте определения ESR путем измерения величины падения напряжения (ступеньки) при ОТКЛЮЧЕНИИ конденсатора от источника тока. Емкость определяется традиционным способом -измерение времени заряда стабильным током (10 мА) То, что получилось в результате - см. на фото.

нажмите на картинку для увеличения.

Прибор предназначен для определения исправности электролитических конденсаторов путем измерения емкости (С) и последовательного эквивалентного сопротивления (ESR). Прибор не является точным инструментом, однако его точности достаточно для радиолюбительской практики и ремонта радиоэлектронных устройств. Напряжение на тестируемом элементе около 100 мВ, что позволяет проводить измерения внутрисхемно. Защита входных цепей традиционна - два встречно-параллельных диода и малоэффективна. Лучше эту задачу решить механически - с помощью специальных щупов, которые в обычном состоянии замкнуты между собой через сопротивление порядка 5 Ом, а при нажатии на щуп эта цепь размыкалась бы.

Пределы измерения:

C………1 - 150000 мкФ

ESR…. 0 - 10 Ом

Принцип измерения.

В приборе использован принцип измерения ESR - практически на постоянном токе. Попробую объяснить подробнее, представим УПРОЩЕННУЮ эквивалентную схему замещения эл.конденсатора - собственно идеальный конденсатор С и включенное последовательно с ним сопротивление R . Подключим эту цепь к источнику тока I. В начальный момент напряжение на этой цепочке будет равно U=I*R, потом напряжение будет линейно расти за счет заряда конденсатора U=I*R+I*t/C (t- время). При отключении конденсатора от источника тока напряжение на нем уменьшится на величину I*R. Вот эта величина и измеряется прибором. Зная ток и величину падения напряжения получаем ESR.

Практически это выглядит так - конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключеня тока напряжение падает на величину 10мА*ESR. Вот собственно и все - далее спокойно можно мерять напряжение на выходе ДУ - там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом. Удачно получилось, что эти же аналоговые цепи используются для измерения емкости.

Следует отметить, что этот принцип измерения ESR не новый, просто встречается не очень часто. Вот наиболее похожая конструкция , только здесь измерение проводится при включении тока. Аналогичный принцип использовался и в "Цифровом измерителе ESR" С.Бирюкова, Схемотехника 2-3 2006г.

Настройка и у правление.

Первое включение - проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4. Подбором R31 добиваемся нормальной контрастности на индикаторе.

Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три - для каналов 1 Ом, 10 Ом и для емкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор - той же кнопкой Set.

Имеется так же отладочный режим - в этом режиме на индикатор выводятся измеренные значения без обработки - для емкости - состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим - при нажатой кнопке "+".

Установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку "+" и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку "+", нажимаем Set - на индикатор выведется сообщение о сохранении U0 в EEPROM. Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем коэффициенты соответственно результатам измерений.

Индикация.

Измеренные значений в цифровом формате выводятся на двухстрочный ЖКИ. В верхней строке выводится емкость, в нижней ESR (ЭПС) конденсатора.

Надпись Cx ---- выводится в след. случаях:

  1. При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
  2. Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx ---- . При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак " > " в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП).

Детали и щупы.

ЖКИ модуль на основе контроллера HD44780 с организацией 16 символов, 2 строки. Встречаются варианты исполнения с "перепутанными" ногами 1 и 2 -земля и питания. Правильную маркировку необходимо посмотреть в документации на индикатор. Другие индикаторы потребуют изменения программы. Микроконтроллер заменим на PIC16F873 с тактовой на частоту 20МГц. Транзистор IRF530 заменим на IRF520, IRF540, IRLZ44n.

Выносные щупы подключаются по четырех проводной схеме для уменьшения влияния сопротивления проводов на результат измерения. Провода, идущие на массу и транзистор VT2 нужно взять потолще.

Прибор обсуждается на форуме.

В наше время, когда, практически, все источники питания радиоэлектронной аппаратуры строятся по импульсным схемам, одним из наиболее востребованных приборов ремонтника есть измеритель ESR электролитических конденсаторов или ESR метр. Долгое время я проверял исправность таких конденсаторов цифровым измерителем ёмкости, заряжающим конденсаторы высокочастотной пилой. Но, так как этот прибор был изготовлен более 10 лет назад, на рассыпухе - мелкая логика и светодиодные индикаторы, - пользоваться таким устаревшим прибором, да ещё и без "настоящего" измерителя ЭПС, считаю сейчас даже просто морально некошерным. Поэтому, с момента освоения прошивки современных микропроцессоров, я всё время мечтал о схеме, отвечающей требованиям нашего времени - минимум деталей, современная элементная база и схемное решение, одновременное отображение значения C и ESR на LCD, никаких реле, рубильников и прочей лабуды, требующей лишних движений. И вот, наконец-то, после многих лет просмотра не одного десятка схем (и всё не то) описание такого прибора мне попалось. Журнал "Радио" №6 за 2010 год, страница 19 - в это схемотехническое и программное решение я влюбился с первого взгляда:-) Популярный МК ATtiny2313, LCD индикатор в две строки по восемь символов, простая и понятная измерительная часть, хорошая программная поддержка. Всё - делаю!

Но, как всегда - редко бывает такая схема, которую я повторяю 1:1, - беру в руки красную пасту, и, а-ля школьный учитель, начинаю энергично вычёркивать со схемы лишние фрагменты. Автономное питание - убираем, так как прибор будет работать в помещении от сетевого адаптера, оставляю только разъём для его подключения. Автоматическое отключение источника питания от схемы и его квазисенсорное включение - вычёркиваем - это нерациональное пижонство. Подключение к компу через СОМ-порт - убираем - какой дурак будет включать целый компьютер ради замера ёмкости одного конденсатора, что и так отображается на ЖКИ прибора; подсветку индикатора делаю постоянно включенной. Итого - схема "похудела" процентов на 25:-) Кроме того, после внимательного чтения описания и вникания в принцип работы измерителя была обнаружена и одна ошибка на схеме - источники тока двух поддиапазонов измерения оказались перепутаны между собой - исправляем...
Вот так и будем собирать. Ниже представлена схема ESR измерителя:

Естественно, считаю очень экстравагантным решение автора использовать на одной плате современную импортную базу одновременно с устаревшей отечественной, да ещё и с не самыми лучшими параметрами (КС133 не выдерживают никакой критики). Поэтому сразу решаю, что вместо КТ3107 буду ставить 2SA733, а стабилитроны возьму BZX 3V3 (хотя поставил BZX 3V9). ЖКИ также будет не указанный в схеме (такого найти не получилось), а более популярный WH0802А фирмы Winstar. Печатную плату развожу, руководствуясь размерами индикатора - по его ширине и высоте (высокие детали ложу горизонтально, электролиты применяю с уменьшенной высотой корпуса), регулятор контрастности в подобных устройствах я всегда распаиваю прямо на выводах самого индикатора. Таким образом, плата вышла размерами 6х6 см, монтаж по высоте равен высоте индикатора (около 1 см). Собранная плата с индикатором легко поместится в пачку от сигарет.

Настройка ESR

О, это отдельный разговор... Прочитав статью, создаётся мнение, что схему сможет настроить только инженер-программист в лаборатории с высокоточными приборами. Судите сами - автор предлагает настроить источники тока по миллиамперметру, гарантирующему точность в две цифры после запятой. Затем – делитель напряжения по вольтметру такой же точности (естественно подразумевается, что в этой точности нет ничего общего с "точностью" китайских показометров). Потом эти измеренные значения надо занести в текст неоткомпилированной программы, перегнать её в машинный код и зашить с этими поправками в МК. Нормально? Но, к счастью, автор очень подробно описал принцип работы своего устройства, почитав которое доходит, что сие чудо высокого полёта современной инженерной мысли может настроить и любой Ивашка с Дворца пионеров и даже вообще без всяких приборов. Всё, закрываем журнал и настраиваем так, как получилось у меня.

Включаем собранный прибор с прошитым и установленным на плату МК. Первым делом крутим регулятор контрастности до появления на экране ЖКИ чёткой надписи в две строки. Если её нет - проверяем монтаж в части сопряжения МК с ЖКИ и подачи питания на оба самых дорогих элемента этого устройства. А также правильность прошивки МК - не забываем про фузы – для PonyProg так:

Нажимаем на плате возле МК кнопку "Калибровка" - в прошивку внесётся поправка на скорость срабатывания входной части измерителя.
Следующий этап. Нам понадобится несколько новых электролитических конденсаторов высокого качества (не обязательно Low Esr) ёмкостью 220...470 мкФ разных партий, лучше всего - на разные напряжения (16в, 35в, 50в...). Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100...470 Ом (у меня получилось 300 Ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит - ещё будет корректироваться; затем проверить и с другими конденсаторами.

Дальше настраиваем измеритель ESR. Эх, придётся снова раскрыть журнал "Радио" - №7 за 2010 год стр.22 - там имеется табличка с типовыми значениями этого параметра для разных конденсаторов. Или же воспользоваться вот этой, найденной на бескрайних просторах Интернета. Кстати, такую табличку, при желании, можно будет приклеить в качестве шпаргалки на корпус будущего прибора под дисплеем. Как пользоваться такой табличкой, я думаю, понятно - скажем, получается, что типовое ЭПС конденсатора 100 мкФ на 35в находится где-то в районе 0,32 Ом:

В следующей табличке указаны максимальные значения ЭПС для электролитических конденсаторов. Если у измеряемого конденсатора оно будет заметно выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя:

Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к табличным. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ (не обращая пока что внимания на показания измерителя ёмкости).

Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ЭПС применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, Ваша задача - подбирая сопротивление R2 - уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов - уточнить показания ESR-метра. Причём, приоритет надо отдавать измерителю ESR. О больших же ёмкостях - я думаю, каждый понимает, что если в аппарате установлен конденсатор на 1000 мкФ, то он будет работать хоть при ёмкости 950 мкФ, хоть при ёмкости 1100 мкФ - поэтому уделять внимание особой точности измерению ёмкости таких конденсаторов вряд ли целесообразно.

Тут может возникнуть вопрос - а нельзя ли вообще сразу и очень точно настроить измеритель ESR, подключая к его входу низкоомные высокоточные резисторы, калибруя прибор по ним? Нет, как раз это не тот случай - так можно настроить разного рода простые аналоговые измерители ЭПС, представляющие собой, грубо говоря, омметры "с наворотами". В этом же приборе используется способ измерения, основан на зарядке конденсатора током, - резистор же, понятное дело, заряжаться не может

Осталось настроить измеритель ёмкости конденсаторов диапазона 0,1...150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3...6,8 кОм (у меня получилось 4,3к) добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролиты, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%, подключая их как по одному, так и параллельными "батареями".

На этом настройка прибора закончена, можно поместить его в корпус и использовать по назначению

Ниже вы можете скачать печатную плату в формате LAY, сборочный чертеж и прошивку

Исходная версия измерителя: Радио - №7, 2010г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК AVR 8-бит

ATtiny2313

1 В блокнот
DA1 Компаратор

LM393-N

1 В блокнот
DA2 Линейный регулятор

LM78L05

1 В блокнот
VT1, VT2 Биполярный транзистор

КТ3107Л

2 2SA733 В блокнот
VT3 MOSFET-транзистор

IRF530

1 В блокнот
VD1, VD2 Стабилитрон

КС133Г

2 BZX 3V3 В блокнот
VD3, VD4 Выпрямительный диод

1N4007

2 В блокнот
HG1 LCD-дисплей MT-08S2A 1 WH0802А В блокнот
C1, C3 Электролитический конденсатор 100мкФ 16В 2 В блокнот
C2, C4 Конденсатор 22 пФ 2 В блокнот
C5-C8 Конденсатор 0.1 мкФ 4 В блокнот
R1 Резистор

3.3...6.8 кОм

1 В блокнот
R2 Резистор

100...470 Ом

1 В блокнот
R3, R4 Резистор

2 кОм

2 В блокнот
R5, R7, R12, R13 Резистор

3 кОм

4 В блокнот
R6 Резистор

33 кОм

1

Собственно, как я уже когда-то очень давно обещал, расскажу про простейший измеритель ESR. В дальнейшем буду писать не ESR, а ЭПС(эквивалентное последовательное сопротивление), поскольку лень переключать раскладку. И так, кратко, что же такое ЭПС.

ЭПС можно представить в виде резистора, включенного последовательно с кондесатором.
На данной картинке - R. Собственно, у исправного конденсатора этот показатель измеряется долями Ома, для конденсаторов малой емкости (до 100мкф) может достигать 2-3 Ом. Более подробно значения ЭПС для исправных конденсаторов можно найти в справочных данных производителей. Со временем, из-за испарения электролита, это сопротивление увеличивается, что приводит к повышению мощности потерь. Как результат конденсатор сильнее нагревается, что еще сильнее ускоряет процесс испарения электролита и приводит к потере емкости.
На практике ремонта точное измерение ЭПС не нужно. Достаточно считать любой конденсатор с ЭПС выше 1-2 Ом неисправным. Можно считать это спорным утверждением, в интернете достаточно легко найти целые таблицы с значениями ЭПС для конденсаторов различной емкости. Однако я убеждался неоднократно, что приблизительной оценки вполне достаточно. Не говоря уже о том, что результаты измерения ЭПС одних и тех же конденсаторов(новых), одного и того же производителя сильно разнятся в зависимости от партии, времени года и фазы луны.
Я использую простой измеритель на копеечной микросхеме. Разработал его Manfred Mornhinweg .


Конструкция довольно простая, но привлекательна своей нетребовательностью к трансформатору. Из недостатков - шкала получается «широкая», в моем случае 0-20ом. Соответственно, нужна большая измерительная головка, т.н. «магнитофонные» (из индикаторов уровня магнитофонов), не подойдут - будет неудобно работать.
В качестве трансформатора автор намотал две обмотки 400 и 20 витков на ферритном кольце 19х16х5мм 2000НМ. Однако можно поступить значительно проще - использовать трансформатор дежурки из любого ATX блока питания. Достаточно заменить R8 на подстроечный многооборотный резистор 3296W сопротивлением 51к. При помощи этого резистора можно будет увеличить коэффициент усиления измерительного усилителя и компенсировать недостаточный коэффициент трансформации. LM7805 необходимо заменить на LM1117-5, это снизит потребляемый ток, плюс нижний порог напряжения питания опустится примерно до 6.5В. Стабилизатор обязателен, иначе шкала будет плавать в зависимости от напряжения питания. Для питания я использовал обычную «Крону». Саму микросхему обязательно поставьте в панельку!
Настройка прибора сводится к установке «нуля» и калибровке шкалы. Для калибровки шкалы используются низкоомные резисторы с допусками 0.5% и сопротивлениями от 0 до 2-5 Ом. Калибровка производится следующим образом - снимаем защитное стекло с индикаторной головки. Включаем прибор и измеряем сопротивление эталонных резисторов. Смотрим, куда отклоняется стрелка и ставим в этом месте на шкале метку с соответствующим сопротивлением. Так размечаем шкалу.
Измеряемые низковольтные конденсаторы(до 50-80 вольт без проблем) разряжаются резисторами R5, R6 и первичной обмоткой трансформатора. «Сетевые» емкости(те, которые после диодного моста в импульсных БП) я предварительно разряжаю приспособой, сделанной из резистора 510 Ом/1Вт, иглы от шприца, крокодила и корпуса гелевой ручки. В теории цепочка R5-R6 должна разрядить и такие емкости, но на практике, выбивает TL062:) Именно поэтому ее надо ставить в панельку -чтобы быстро заменить. Но надежнее - предварительно разрядить «сетевую» емкость.
В целом - очень удачный прибор - дешев, прост, не требователен к трансформатору.

Похожие публикации