К подходам пересмотра исходного кода относятся. Использование статического и динамического анализа для повышения качества продукции и эффективности разработки

Статический анализ кода это процесс выявления ошибок и недочетов в исходном коде программ. Статический анализ можно рассматривать как автоматизированный процесс обзора кода. Остановимся на обзоре кода чуть подробнее.

Обзор кода (code review) – один из самых старых и надежных методов выявления дефектов. Он заключается в совместном внимательном чтении исходного кода и высказывании рекомендаций по его улучшению. В процессе чтения кода выявляются ошибки или участи кода, которые могут стать ошибочными в будущем. Также считается, что автор кода во время обзора не должен давать объяснений, как работает та или иная часть программы. Алгоритм работы должен быть понятен непосредственно из текста программы и комментариев. Если это условие не выполняется, то код должен быть доработан.

Как правило, обзор кода хорошо работает, так как программисты намного легче замечают ошибки в чужом коде. Более подробно с методикой обзора кода можно познакомиться в замечательной книге Стива Макконнелла "Совершенный код" (Steve McConnell, "Code Complete") .

Единственный существенный недостаток методологии совместного обзора кода, это крайне высокая цена. Необходимо регулярно собирать нескольких программистов для обзора нового кода или повторного обзора кода после внесения рекомендаций. При этом программисты должны регулярно делать перерывы для отдыха. Если пытаться просматривать сразу большие фрагменты кода, то внимание быстро притупляется и польза от обзора кода быстро сходит на нет.

Получается, что с одной стороны хочется регулярно осуществлять обзор кода. С другой - это слишком дорого. Компромиссным решением являются инструменты статического анализа кода. Они без устали обрабатывают исходные тексты программ и выдают программисту рекомендации обратить повышенное внимание на определенные участки кода. Конечно, программа не заменит полноценного обзора кода, выполняемого коллективом программистов. Однако соотношение польза/цена делает использование статического анализа весьма полезной практикой, применяемой многими компаниями.

Задачи, решаемые программами статического анализа кода можно разделить на 3 категории:

  1. Выявление ошибок в программах. Подробнее про это будет рассказано ниже.
  2. Рекомендации по оформлению кода. Некоторые статические анализаторы позволяют проверять, соответствует ли исходный код, принятому в компании стандарту оформления кода. Имеется в виду контроль количества отступов в различных конструкциях, использование пробелов/символов табуляции и так далее.
  3. Подсчет метрик . Метрика программного обеспечения - это мера, позволяющая получить численное значение некоторого свойства программного обеспечения или его спецификаций. Существует большое количество разнообразных метрик, которые можно подсчитать, используя те ли иные инструменты.

Другие преимущества статического анализа кода:

  1. Полное покрытие кода. Статические анализаторы проверяют даже те фрагменты кода, которые получают управление крайне редко. Такие участки кода, как правило, не удается протестировать другими методами. Это позволяет находить дефекты в обработчиках редких ситуаций, в обработчиках ошибок или в системе логирования.
  2. Статический анализ не зависит от используемого компилятора и среды, в которой будет выполняться скомпилированная программа. Это позволяет находить скрытые ошибки, которые могут проявить себя только через несколько лет. Например, это ошибки неопределенного поведения . Такие ошибки могут проявить себя при смене версии компилятора или при использовании других ключей для оптимизации кода. Другой интересный пример скрытых ошибок приводится в статье "Перезаписывать память - зачем? ".
  3. Можно легко и быстро обнаруживать опечатки и последствия использования Copy-Paste . Как правило, нахождение этих ошибок другими способами является кране неэффективной тратой времени и усилий. Обидно после часа отладки обнаружить, что ошибка заключается в выражении вида "strcmp(A, A)". Обсуждая типовые ошибки, про такие ляпы, как правило, не вспоминают. Но на практике на их выявление тратится существенное время.

Недостатки статического анализа кода

  1. Статический анализ, как правило, слаб в диагностике утечек памяти и параллельных ошибок. Чтобы выявлять подобные ошибки, фактически необходимо виртуально выполнить часть программы. Это крайне сложно реализовать. Также подобные алгоритмы требуют очень много памяти и процессорного времени. Как правило, статические анализаторы ограничиваются диагностикой простых случаев. Более эффективным способом выявления утечек памяти и параллельных ошибок является использование инструментов динамического анализа.
  2. Программа статического анализа предупреждает о подозрительных местах. Это значит, что на самом деле код, может быть совершенно корректен. Это называется ложно-позитивными срабатываниями. Понять, указывает анализатор на ошибку или выдал ложное срабатывание, может только программист. Необходимость просматривать ложные срабатывания отнимает рабочее время и ослабляет внимание к тем участкам кода, где в действительности содержатся ошибки.

Ошибки, обнаруживаемые статическими анализаторами весьма разнообразны. Вот, например, список диагностик , которые реализованы в инструменте PVS-Studio. Некоторые анализаторы специализируются на определенной области или типах дефектов. Другие, поддерживают определенные стандарты кодирование, например MISRA-C:1998, MISRA-C:2004, Sutter-Alexandrescu Rules, Meyers-Klaus Rules и так далее.

Область статического анализа активно развивается, появляются новые диагностические правила и стандарты, некоторые правила устаревают. Поэтому нет смысла пытаться сравнить анализаторы, на основании списков обнаруживаемых дефектов. Единственный способ сравнить инструменты, это проверить с их помощью набор проектов и посчитать найденных ими количество настоящих ошибок. Подробнее эта тема освещена в статье "

В связи с растущим объемом разрабатываемого ПО проблема безопасности становится все более актуальной. Одним из вариантов ее решения может стать применение безопасного цикла создания продуктов, включая планирование, проектирование, разработку, тестирование. Такой подход позволяет получать на выходе решение с продуманной системой безопасности, которое не потребуется затем многократно “латать" из-за существующих уязвимостей. В данной статье пойдет речь об одной из важных практик, применяемых на этапе тестирования, – статическом анализе кода.

Александр Миноженко
Старший исследователь департамента анализа кода
в ERPScan (дочерняя компания Digital Security)

При статическом анализе кода происходит анализ программы без ее реального исполнения, а при динамическом анализе – в процессе исполнения. В большинстве случаев под статическим анализом подразумевают анализ, осуществляемый с помощью автоматизированных инструментов исходного или исполняемого кода.

Исторически первые инструменты статического анализа (часто в их названии используется слово lint) применялись для нахождения простейших дефектов программы. Они использовали простой поиск по сигнатурам, то есть обнаруживали совпадения с имеющимися сигнатурами в базе проверок. Они применяются до сих пор и позволяют определять "подозрительные" конструкции в коде, которые могут вызвать падение программы при выполнении.

Недостатков у такого метода немало. Основным является то, что множество "подозрительных" конструкций в коде не всегда являются дефектами. В большинстве случаев такой код может быть синтаксически правильным и работать корректно. Соотношение "шума" к реальным дефектам может достигать 100:1 на больших проектах. Таким образом, разработчику приходится тратить много времени на его отсеивание от реальных дефектов, что отменяет плюсы автоматизированного поиска.

Несмотря на очевидные недостатки, такие простые утилиты для поиска уязвимостей до сих пор используются. Обычно они распространяются бесплатно, так как коммерческого применения они, по понятным причинам, не получили.

Второе поколение инструментов статического анализа в дополнение к простому поиску совпадений по шаблонам оснащено технологиями анализа, которые до этого применялись в компиляторах для оптимизации программ. Эти методы позволяли по анализу исходного кода составлять графы потока управления и потока данных, которые представляют собой модель выполнения программы и модель зависимостей одних переменных от других. Имея данные, графы можно моделировать, определяя, как будет выполняться программа (по какому пути и с какими данными).

Поскольку программа состоит из множества функций, процедур модулей, которые могут зависеть друг от друга, недостаточно анализировать каждый файл по отдельности. Для полноценного межпроцедурного анализа необходимы все файлы программы и зависимости.

Основным достоинством этого типа анализаторов является меньше количество "шума" за счет частичного моделирования выполнения программ и возможность обнаружения более сложных дефектов.

Процесс поиска уязвимостей в действии

Для иллюстрации приведем процесс поиска уязвимостей инъекции кода и SQL-инъекции (рис. 1).

Для их обнаружения находятся места в программе, откуда поступают недоверенные данные (рис. 2), например, запрос протокола HTTP.


На листинге (рис. 1) 1 на строке 5 данные получаются из HTTP запроса, который поступает от пользователей при запросе Web-страницы. Например, при запросе страницы “http://example.com/main?name =‘ or 1=‘1”. Строка or 1=‘1 попадает в переменную data из объекта request, который содержит HTTP-запрос.

Дальше на строке 10 идет вызов функции Process с аргументом data, которая обрабатывает полученную строку. На строке 12 – конкатенация полученной строки data и запроса к базе данных, уже на строке 15 происходит вызов функции запроса к базе данных c результирующим запросом. В результате данных манипуляции получается запрос к базе данных вида: select * from users where name=‘’ or ‘1’=‘1’.

Что означает выбрать из таблицы всех пользователей, а не пользователя с определенным именем. Это не является стандартным функционалом и влечет нарушение конфиденциальности, что соответственно означает уязвимость. В результате потенциальный злоумышленник может получить информацию о всех пользователях, а не только о конкретном. Также он может получить данные из других таблиц, например содержащих пароли и другие критичные данные. А в некоторых случаях – исполнить свой вредоносный код.

Статические анализаторы работают похожим образом: помечают данные, которые поступают из недоверенного источника, отслеживаются все манипуляции с данными и пытаются определить, попадают ли данные в критичные функции. Под критичными функциями обычно подразумеваются функции, которые исполняют код, делают запросы к БД, обрабатывают XML-документы, осуществляют доступ к файлам и др., в которых изменение параметра функции может нанести ущерб конфиденциальности, целостности и доступности.

Также возможна обратная ситуация, когда из доверенного источника, например переменных окружения, критичных таблиц базы данных, критичных файлов, данные поступают в недоверенный источник, например генерируемую HTML-страницу. Это может означать потенциальную утечку критичной информации.

Одним из недостатков такого анализа является сложность определения на пути выполнения программ функций, которые осуществляют фильтрацию или валидацию значений. Поэтому большинство анализаторов включает набор стандартных системных функций фильтрации для языка и возможность задания таких функций самостоятельно.

Автоматизированный поиск уязвимостей

Достаточно сложно достоверно определить автоматизированными методами наличие закладок в ПО, поскольку необходимо понимать, какие функции выполняет определенный участок программы и являются ли они необходимыми программе, а не внедрены для обхода доступа к ресурсам системы. Но можно найти закладки по определенным признакам (рис. 3). Например, доступ к системе при помощи сравнения данных для авторизации или аутентификации с предопределенными значениями, а не использование стандартных механизмов авторизации или аутентификации. Найти данные признаки можно с помощью простого сигнатурного метода, но анализ потоков данных позволяет более точно определять предопределенные значения в программе, отслеживая, откуда поступило значение, динамически из базы данных или он было "зашито" в программе, что повышает точность анализа.


Нет общего мнения по поводу обязательного функционала третьего поколения инструментов статического анализа. Некоторые вендоры предлагают более тесную интеграцию в процесс разработки, использование SMT-решателей для точного определения пути выполнения программы в зависимости от данных.

Также есть тенденция добавления гибридного анализа, то есть совмещенных функций статического и динамического анализов. У данного подхода есть несомненные плюсы: например, можно проверять существование уязвимости, найденной с помощью статического анализа путем эксплуатации этой уязвимости. Недостатком такого подхода может быть следующая ситуация. В случае ошибочной корреляции места, где не было доказано уязвимостей с помощью динамического анализа, возможно появление ложноотрицательного результата. Другими словами, уязвимость есть, но анализатор ее не находит.

Если говорить о результатах анализа, то для оценки работы статического анализатора используется, как и в статистике, разделение результата анализа на положительный, отрицательный, ложноотрицатель-ный (дефект есть, но анализатор его не находит) и ложнопо-ложительный (дефекта нет, но анализатор его находит).

Для реализации эффективного процесса устранения дефектов важно отношение количества истинно найденных ко всем найденным дефектам. Данное отношение называют точностью. При небольшой точности получается большое соотношение истинных дефектов к ложноположительным, что так же, как и в ситуации с большим количеством шума, требует от разработчиков много времени на анализ результатов и фактически нивелирует плюсы автоматизированного анализа кода.

Для поиска уязвимостей особенно важно отношение найденных истинных уязвимостей ко всем найденным, поскольку данное отношение и принято считать полнотой. Ненайденные уязвимости опаснее ложнопо-ложительного результата, так как могут нести прямой ущерб бизнесу.

Достаточно сложно в одном решении сочетать хорошую полноту и точность анализа. Инструменты первого поколения, работающие по простому совпадению шаблонов, могут показывать хорошую полноту анализа, но при этом низкую точность из-за ограничения технологий. Благодаря тому что второе поколение анализаторов может определять зависимости и пути выполнения программы, обеспечивается более высокая точность анализа при такой же полноте.

Несмотря на то что развитие технологий происходит непрерывно, автоматизированные инструменты до сих пор не заменяют полностью ручной аудит кода. Такие категории дефектов, как логические, архитектурные уязвимости и проблемы с производительностью, могут быть обнаружены только экспертом. Однако инструменты работают быстрее, позволяют автоматизировать процесс и стоят дешевле, чем работа аудитора. При внедрении статического анализа кода можно использовать ручной аудит для первичной оценки, поскольку это позволяет обнаруживать серьезные проблемы с архитектурой. Автоматизированные же инструменты должны применяться для быстрого исправления дефектов. Например, при появлении новой версии ПО.

Существует множество решений для статического анализа исходного кода. Выбор продукта зависит от поставленных задач. Если необходимо повысить качество кода, то вполне можно использовать анализаторы первого поколения, использующие поиск по шаблонам. В случае когда нужно найти уязвимости в ходе реализации цикла безопасной разработки, логично использовать инструменты, использующие анализ потока данных. Ну а если опыт внедрения средств статического и динамического анализа уже имеется, можно попробовать средства, использующие гибридный анализ.

Колонка эксперта

Кибервойны: кибероружие

Петр
Ляпин

Начальник службы информационной безопасности, ООО “НИИ ТНН” (“Транснефть”)

Глядя на фактически развернутую гонку кибервооружений, прежде всего следует уяснить ряд фундаментальных положений в этой области.

Во-первых, война – международное явление, в котором участвуют два или более государства. Война подчиняется своим законам. Один из них гласит: "воюющие не пользуются неограниченным правом в выборе средств нанесения вреда неприятелю" 1 .

Во-вторых, давно канули в Лету те времена, когда вопросы войны и мира конфликтующие стороны могли решать самостоятельно. В условиях глобализации война становится делом всего международного сообщества. Более того, есть вполне действенный стабилизационный механизм – Совбез ООН. Однако в настоящий момент применять его к конфликтам в киберпространстве крайне затруднительно.

В-третьих, понятие кибервойны и кибероружия ни в одном действующем международном акте нет. Тем не менее следует разграничивать киберсредства, предназначенные для нанесения вреда (собственно кибероружие), и средства различного рода шпионажа. При этом термин "кибероружие" широко используется в том числе видными представителями научного сообщества.

Удачным видится определение кибероружия, данное профессором МГЮА В.А. Батырем: технические и программные средства поражения (устройства, программные коды), созданные государственными структурами, которые конструктивно предназначены для воздействия на программируемые системы, эксплуатацию уязвимостей в системах передачи и обработки информации или программно-технических системах с целью уничтожения людей, нейтрализации технических средств, либо разрушения объектов инфраструктуры противника 2 . Это определение во многом соответствует объективной действительности – не всякий "удачный вирус" есть кибероружие.

Так, к кибероружию можно отнести: Stuxnet и Flame, ботнеты, используемые для распределенных атак, массово внедряемые на этапе производства элементной базы аппаратные и программные закладки. Последнее, к слову, серьезнейшая проблема, масштаб которой невозможно переоценить. Достаточно взглянуть на перечень закладок АНБ США (от коммутаторов до USB-кабелей), опубликованный немецким СМИ Spiegel в декабре 2013 г. Смартфоны, ТВ, холодильники и прочая бытовая техника, подключенная к Интернету, вообще стирает всякие границы прогнозов.

___________________________________________
1 Дополнительный протокол I 1977 г. к Женевским конвенциям о защите жертв войны 1949 г.
2 Статья В.А. Батыря в Евразийском юридическом журнале (2014, №2) “Новые вызовы XXI в. в сфере развития средств вооруженной борьбы".

При написании кода на C и C++ люди допускают ошибки. Многие из этих ошибок находятся благодаря -Wall , ассертам, тестам, дотошному code review, предупреждениям со стороны IDE, сборкой проекта разными компиляторами под разные ОС, работающие на разном железе, и так далее. Но даже при использовании всех этих мер ошибки часто остаются незамеченными. Немного улучшить положение дел позволяет статический анализ кода. В этой заметке мы познакомимся с некоторыми инструментами для произведения этого самого статического анализа.

CppCheck

CppCheck является бесплатным кроссплатформенным статическим анализатором с открытым исходным кодом (GPLv3). Он доступен в пакетах многих *nix систем из коробки. Также CppCheck умеет интегрироваться со многими IDE. На момент написания этих строк CppCheck является живым, развивающимся проектом.

Пример использования:

cppcheck ./ src/

Пример вывода:

: (error) Common realloc mistake: "numarr" nulled but not
freed upon failure

: (error) Dangerous usage of "n" (strncpy doesn"t always
null-terminate it)

CppCheck хорош тем, что он довольно быстро работает. Нет повода не добавить его прогон в систему непрерывной интеграции , чтобы исправлять прямо все-все-все выводимые им предупреждения. Даже несмотря на то, что многие из них на практике оказываются ложно-положительными срабатываниями.

Clang Static Analyzer

Еще один бесплатный кроссплатформенный статический анализатор с открытыми исходным кодом. Является частью так называемого LLVM-стэка . В отличие от CppCheck работает существенно медленнее, но и ошибки находит куда более серьезные.

Пример построения отчета для PostgreSQL :

CC =/ usr/ local/ bin/ clang38 CFLAGS ="-O0 -g" \
./ configure --enable-cassert --enable-debug
gmake clean
mkdir ../ report-201604 /
/ usr/ local/ bin/ scan-build38 -o ../ report-201604 / gmake -j2

Пример построения отчета для ядра FreeBSD :

# использование своего MAKEOBJDIR позволяет собирать ядро не под рутом
mkdir / tmp/ freebsd-obj
# сама сборка
COMPILER_TYPE =clang / usr/ local/ bin/ scan-build38 -o ../ report-201604 / \
make buildkernel KERNCONF =GENERIC MAKEOBJDIRPREFIX =/ tmp/ freebsd-obj

Идея, как несложно догадаться, заключается в том, чтобы сделать clean, а затем запустить сборку под scan-build.

На выходе получается очень симпатичный HTML-отчет с подробнейшими пояснениями, возможностью фильтровать ошибки по их типу, и так далее. Обязательно посмотрите на офсайте как это примерно выглядит.

В данном контексте не могу не отметить, что в мире Clang/LLVM есть еще и средства динамического анализа, так называемые «санитайзеры». Их много, они находят очень крутые ошибки и работают быстрее, чем Valgrind (правда, только под Linux). К сожалению, обсуждение санитайзеров выходит за рамки настоящей заметки, поэтому ознакомьтесь с ними самостоятельно .

PVS-Studio

Закрытый статический анализатор, распространяемый за деньги. PVS-Studio работает только под Windows и только с Visual Studio. Есть многочисленные сведения о существовании Linux-версии, но на официальном сайте она не доступна. Насколько я понял, цена лицензии обсуждается индивидуально с каждым клиентом. Доступен триал.

Я протестировал PVS-Studio 6.02 на Windows 7 SP1 работающей под KVM с установленной Visual Studio 2013 Express Edition. Во время установки PVS-Studio также дополнительно скачался.NET Framework 4.6. Выглядит это примерно так. Вы открываете проект (я тестировал на PostgreSQL) в Visual Studio, в PVS-Studio жмете «сейчас я начну собирать проект», затем в Visual Studio нажимаете Build, по окончании сборки в PVS-Studio жмете «я закончил» и смотрите отчет.

PVS-Studio действительно находит очень крутые ошибки, которые Clang Static Analyzer не видит (например). Также очень понравился интерфейс, позволяющий сортировать и фильтровать ошибки по их типу, серьезности, файлу, в котором они были найдены, и так далее.

С одной стороны, печалит, что чтобы использовать PVS-Studio, проект должен уметь собираться под Windows. С другой стороны, использовать в проекте CMake и собирать-тестировать его под разными ОС, включая Windows, при любом раскладе является очень неплохой затеей. Так что, пожалуй, это не такой уж и большой недостаток. Кроме того, по следующим ссылкам можно найти кое-какие подсказки касательно того, как людям удавалось прогонять PVS-Studio на проектах, которые не собираются под Windows: раз , два , три , четыре .

Дополнение: Попробовал бета-версию PVS-Studio для Linux. Пользоваться ею оказалось очень просто . Создаем pvs.conf примерно такого содержания:

lic-file=/home/afiskon/PVS-Studio.lic
output-file=/home/afiskon/postgresql/pvs-output.log

Затем говорим:

make clean
./ configure ...
pvs-studio-analyzer trace -- make
# будет создан большой (у меня ~40 Мб) файл strace_out
pvs-studio-analyzer analyze --cfg ./ pvs.conf
plog-converter -t tasklist -o result.task pvs-output.log

Дополнение: PVS-Studio для Linux вышел из беты и теперь доступен всем желающим .

Coverity Scan

Coverity считается одним из самых навороченных (а следовательно и дорогих) статических анализаторов. К сожалению, на официальном сайте невозможно скачать даже его триал-версию. Можно заполнить форму, и если вы какой-нибудь IBM, с вами может быть свяжутся. При очень сильном желании Coverity какой-нибудь доисторической версии можно найти через неофициальные каналы. Он бывает для Windows и Linux, работает примерно по тому же принципу, что и PVS-Studio. Но без серийника или лекарства отчеты Coverity вам не покажет. А чтобы найти серийник или лекарство, нужно иметь не просто очень сильное желание, а очень-очень-очень сильное.

К счастью, у Coverity есть SaaS версия — Coverity Scan. Мало того, что Coverity Scan доступен для простых смертных, он еще и совершенно бесплатен. Привязки к конкретной платформе нет. Однако анализировать с помощью Coverity Scan разрешается только открытые проекты.

Вот как это работает. Вы регистрируете свой проект через веб-интерфейс (или присоединяетесь к уже существующему, но это менее интересный кейс). Чтобы посмотреть отчеты, нужно пройти модерацию, которая занимает 1-2 рабочих дня.

Отчеты строятся таким образом. Сначала вы локально собираете свой проект под специальной утилитой Coverity Build Tool. Утилита эта аналогична scan-build из Clang Static Analyzer и доступна под все мыслимые платформы, включая всякую экзотику типа FreeBSD или даже NetBSD.

Установка Coverity Build Tool:

tar -xvzf cov-analysis-linux64-7.7.0.4.tar.gz
export PATH =/ home/ eax/ temp/ cov-analysis-linux64-7.7.0.4/ bin:$PATH

Готовим тестовый проект (я использовал код из заметки Продолжаем изучение OpenGL: простой вывод текста):

git clone git @ github.com:afiskon/ c-opengl-text.git
cd c-opengl-text
git submodule init
git submodule update
mkdir build
cd build
cmake ..

Затем собираем проект под cov-build:

cov-build --dir cov-int make -j2 demo emdconv

Важно! Не меняйте название директории cov-int.

Архивируем директорию cov-int:

tar -cvzf c-opengl-text.tgz cov-int

Заливаем архив через форму Upload a Project Build. Также на сайте Coverity Scan есть инструкции по автоматизации этого шага при помощи curl. Ждем немного, и можно смотреть результаты анализа. Примите во внимание, что чтобы пройти модерацию, нужно отправить на анализ хотя бы один билд.

Ошибки Coverity Scan ищет очень хорошо. Уж точно лучше, чем Clang Static Analyzer. При этом ложно-положительные срабатывания есть, но их намного меньше. Что удобно, в веб-интерфейсе есть что-то вроде встроенного багтрекера, позволяющего присваивать ошибкам серьезность, ответственного за их исправление и подобные вещи. Видно, какие ошибки новые, а какие уже были в предыдущих билдах. Ложно-положительные срабатывания можно отметить как таковые и скрыть.

Заметьте, что чтобы проанализировать проект в Coverity Scan, не обязательно быть его владельцем. Мне лично вполне успешно удалось проанализировать код PostgreSQL без присоединения к уже существующему проекту. Думается также, что при сильном желании (например, используя сабмодули Git), можно подсунуть на проверку немного и не очень-то открытого кода.

Заключение

Вот еще несколько статических анализаторов, не попавших в обзор:

Каждый из рассмотренных анализаторов находят такие ошибки, которые не находят другие. Поэтому в идеале лучше использовать их сразу все. Делать это вот прямо постоянно, скорее всего, объективно не получится. Но делать хотя бы один прогон перед каждым релизом точно будет не лишним. При этом Clang Static Analyzer выглядит наиболее универсальным и при этом достаточно мощным. Если вас интересует один анализатор, который нужно обязательно использовать в любом проекте, используйте его. Но все же я бы рекомендовал дополнительно использовать как минимум PVS-Studio или Coverity Scan.

А какие статические анализаторы вы пробовали и/или регулярно использовали и каковы ваши впечатления от них?


Аннотация

Статический анализ - это способ проверки исходного кода программы на корректность. Процесс статического анализа состоит из трех этапов. Сначала анализируемый код разбивается на лексемы - константы, идентификаторы, и т. д. Эта операция выполняется лексером. Затем лексемы передаются синтаксическому анализатору, который выстраивает по этим лексемам дерево кода. Наконец, проводится статический анализ построенного дерева. В данной обзорной статье приведено описание трех методов статического анализа: анализ с обходом дерева кода, анализ потока данных и анализ потока данных с выбором путей.

Введение

Тестирование является важной частью процесса разработки приложений. Существует множество различных видов тестирования, в том числе и два вида, касающиеся программного кода: статический анализ и динамический анализ.

Динамический анализ проводится над исполняемым кодом скомпилированной программы. При этом проверяется только поведение, зависящее от пользователя, т.е. только тот код, который выполняется во время теста. Динамический анализатор может находить утечки памяти, измерять производительность программы, получать стек вызовов и т. п.

Статический анализ позволяет проверять исходный код программы до ее выполнения. В частности, любой компилятор проводит статический анализ при компиляции. Однако, в больших реальных проектах зачастую возникает необходимость проверить весь код на предмет соответствия некоторым дополнительным требованиям. Эти требования могут быть весьма разнообразны, начиная от правил именования переменных и заканчивая мобильностью (например, код должен благополучно выполняться на платформах х86 и х64). Наиболее распространенными требованиями являются:

  • Надежность - меньшее количество ошибок в тестируемой программе.
  • Удобство сопровождения - более понятный код, который легко изменять и усовершенствовать.
  • Мобильность - гибкость тестируемой программы при запуске на различных платформах.
  • Удобочитаемость - сокращение времени, необходимого для понимания кода.

Требования можно разбить на правила и рекомендации. Правила, в отличие от рекомендаций, обязательны для выполнения. Аналогом правил и рекомендаций являются ошибки и предупреждения, выдаваемые анализаторами кода, встроенными в стандартные компиляторы.

Правила и рекомендации, в свою очередь, формируют стандарт кодирования. Этот стандарт определяет то, как программист должен писать программный код. Стандарты кодирования применяются в организациях, занимающихся разработкой программного обеспечения.

Статический анализатор находит строки исходного кода, которые, предположительно, не соответствуют принятому стандарту кодирования и отображает диагностические сообщения, чтобы разработчик мог понять причину проблемы. Процесс статического анализа аналогичен компиляции, только при этом не генерируется ни объектный, ни исполняемый код. В данном обзоре приводится пошаговое описание процесса статического анализа.

Процесс анализа

Процесс статического анализа состоит из двух основных шагов: создания дерева кода (также называемого ) и анализа этого дерева.

Для того чтобы проанализировать исходный код, анализатор должен сначала "понять" этот код, т.е. разобрать его по составу и создать структуру, описывающую анализируемый код в удобной форме. Эта форма и называется деревом кода. Чтобы проверить, соответствует ли код стандарту кодирования, необходимо построить такое дерево.

В общем случае дерево строится только для анализируемого фрагмента кода (например, для какой-то конкретной функции). Для того чтобы создать дерево код обрабатывается сначала , а затем .

Лексер отвечает за разбиение входных данных на отдельные лексемы, а также за определение типа этих лексем и их последовательную передачу синтаксическому анализатору. Лексер считывает текст исходного кода строку за строкой, а затем разбивает полученные строки на зарезервированные слова, идентификаторы и константы, называемые лексемами. После получения лексемы лексер определяет ее тип.

Рассмотрим примерный алгоритм определения типа лексемы.

Если первый символ лексемы является цифрой, лексема считается числом, если этот символ является знаком "минус", то это - отрицательное число. Если лексема является числом, она может быть числом целым или дробным. Если в числе содержится буква E, определяющая экспоненциальное представление, или десятичная точка, число считается дробным, в противном случае - целым. Заметим, что при этом может возникнуть лексическая ошибка - если в анализируемом исходном коде содержится лексема "4xyz", лексер сочтет ее целым числом 4. Это породит синтаксическую ошибку, которую сможет выявить синтаксический анализатор. Однако подобные ошибки могут обнаруживаться и лексером.

Если лексема не является числом, она может быть строкой. Строковые константы могут распознаваться по одинарным кавычкам, двойным кавычкам, или каким-либо другим символам, в зависимости от синтаксиса анализируемого языка.

Наконец, если лексема не является строкой, она должна быть идентификатором, зарезервированным словом, или зарезервированным символом. Если лексема не подходит и под эти категории, возникает лексическая ошибка. Лексер не будет обрабатывать эту ошибку самостоятельно - он только сообщит синтаксическому анализатору, что обнаружена лексема неизвестного типа. Обработкой этой ошибки займется синтаксический анализатор.

Синтаксический анализатор понимает грамматику языка. Он отвечает за обнаружение синтаксических ошибок и за преобразование программы, в которой такие ошибки отсутствуют, в структуры данных, называемые деревьями кода. Эти структуры в свою очередь поступают на вход статического анализатора и обрабатываются им.

В то время как лексер понимает лишь синтаксис языка, синтаксический анализатор также распознает и контекст. Например, объявим функцию на языке Си:

Int Func(){return 0;}

Лексер обработает эту строку и разобьет ее на лексемы как показано в таблице 1:

Таблица 1 - Лексемы строки "int Func(){return 0};".

Строка будет распознана как 8 корректных лексем, и эти лексемы будут переданы синтаксическому анализатору.

Этот анализатор просмотрит контекст и выяснит, что данный набор лексем является объявлением функции, которая не принимает никаких параметров, возвращает целое число, и это число всегда равно 0.

Синтаксический анализатор выяснит это, когда создаст дерево кода из лексем, предоставленных лексером, и проанализирует это дерево. Если лексемы и построенное из них дерево будут сочтены правильными - это дерево будет использовано при статическом анализе. В противном случае синтаксический анализатор выдаст сообщение об ошибке.

Однако процесс построения дерева кода не сводится к простому представлению лексем в виде дерева. Рассмотрим этот процесс подробнее.

Дерево кода

Дерево кода представляет самую суть поданных на вход данных в форме дерева, опуская несущественные детали синтаксиса. Такие деревья отличаются от конкретных деревьев синтаксиса тем, что в них нет вершин, представляющих знаки препинания вроде точки с запятой, завершающей строку, или запятой, которая ставится между аргументами функции.

Синтаксические анализаторы, используемые для создания деревьев кода, могут быть написаны вручную, а могут и создаваться генераторами синтаксических анализаторов. Деревья кода обычно создаются снизу вверх.

При разработке вершин дерева в первую очередь обычно определяется уровень модульности. Иными словами, определяется, будут ли все конструкции языка представлены вершинами одного типа, различаемыми по значениям. В качестве примера рассмотрим представление бинарных арифметических операций. Один вариант - использовать для всех бинарных операций одинаковые вершины, одним из атрибутов которых будет тип операции, например, "+". Другой вариант - использовать для разных операций вершины различного типа. В объектно-ориентированном языке это могут быть классы вроде AddBinary, SubstractBinary, MultipleBinary, и т. п., наследуемые от абстрактного базового класса Binary.

В качестве примера разберем два выражения: 1 + 2 * 3 + 4 * 5 и 1+ 2 * (3 + 4) * 5 (см. рисунок 1).

Как видно из рисунка, оригинальный вид выражения может быть восстановлен при обходе дерева слева направо.

После того, как дерево кода создано и проверено, статический анализатор может определить, соответствует ли исходный код правилам и рекомендациям, указанным в стандарте кодирования.

Методы статического анализа

Существует множество различных методов , в частности, анализ с , анализ потока данных, анализ потока данных с выбором пути и т. д. Конкретные реализации этих методов различны в разных анализаторах. Тем не менее, статические анализаторы для различных языков программирования могут использовать один и тот же базовый код (инфраструктуру). Эти инфраструктуры содержат набор основных алгоритмов, которые могут использоваться в разных анализаторах кода вне зависимости от конкретных задач и анализируемого языка. Набор поддерживаемых методов и конкретная реализация этих методов, опять же, будет зависеть от конкретной инфраструктуры. Например, инфраструктура может позволять легко создавать анализатор, использующий обход дерева кода, но не поддерживать анализ потока данных .

Хотя все три перечисленные выше метода статического анализа используют дерево кода, построенное синтаксическим анализатором, эти методы различаются по своим задачам и алгоритмам.

Анализ с обходом дерева, как видно из названия, выполняется путем обхода дерева кода и проведения проверок на предмет соответствия кода принятому стандарту кодирования, указанному в виде набора правил и рекомендаций. Именно этот тип анализа проводят компиляторы.

Анализ потока данных можно описать как процесс сбора информации об использовании, определении и зависимостях данных в анализируемой программе. При анализе потока данных используется граф потока команд, генерируемый на основе дерева кода. Этот граф представляет все возможные пути выполнения данной программы: вершины обозначают "прямолинейные", без каких бы то ни было переходов, фрагменты кода, а ребра - возможную передачу управления между этими фрагментами. Поскольку анализ выполняется без запуска проверяемой программы, точно определить результат ее выполнения невозможно. Иными словами, невозможно выяснить, по какому именно пути будет передаваться управление. Поэтому алгоритмы анализа потока данных аппроксимируют возможное поведение, например, рассматривая обе ветви оператора if-then-else, или выполняя с определенной точностью тело цикла while. Ограничение точности существует всегда, поскольку уравнения потока данных записываются для некоторого набора переменных, и количество этих переменных должно быть ограничено, поскольку мы рассматриваем лишь программы с конечным набором операторов. Следовательно, для количества неизвестных всегда существует некий верхний предел, дающий ограничение точности. С точки зрения графа потока команд при статическом анализе все возможные пути выполнения программы считаются действительными. Из-за этого допущения при анализе потока данных можно получать лишь приблизительные решения для ограниченного набора задач .

Описанный выше алгоритм анализа потока данных не различает путей, поскольку все возможные пути, вне зависимости от того реальны они, или нет, будут ли они выполняться часто, или редко, все равно приводят к решению. На практике, однако, выполняется лишь малая часть потенциально возможных путей. Более того, самый часто выполняемый код, как правило, составляет еще меньшее подмножество всех возможных путей. Логично сократить анализируемый граф потока команд и уменьшить таким образом объем вычислений, анализируя лишь некоторое подмножество возможных путей. Анализ с выбором путей проводится по сокращенному графу потока команд, в котором нет невозможных путей и путей, не содержащих "опасного" кода. Критерии выбора путей различны в различных анализаторах. Например, анализатор может рассматривать лишь пути, содержащие объявления динамических массивов, считая такие объявления "опасными" согласно настройкам анализатора.

Заключение

Число методов статического анализа и самих анализаторов возрастает из года в год, и это означает, что интерес к статическим анализаторам кода растет. Причина заинтересованности заключается в том, что разрабатываемое программное обеспечение становится все более и более сложным и, следовательно, проверять код вручную становится невозможно.

В этой статье было приведено краткое описание процесса статического анализа и различных методов проведения такого анализа.

Библиографический список

  • Dirk Giesen Philosophy and practical implementation of static analyzer tools . -Electronic data. -Dirk Giesen, cop. 1998.
  • James Alan Farrell Compiler Basics . -Electronic data. -James Alan Farrell, cop 1995. -Access mode: http://www.cs.man.ac.uk/~pjj/farrell/compmain.html
  • Joel Jones Abstract syntax tree implementation idioms . -Proceedings of the 10th Conference on Pattern Languages of Programs 2003, cop 2003.
  • Ciera Nicole Christopher Evaluating Static Analysis Frameworks .- Ciera Nicole, cop. 2006.
  • Leon Moonen A Generic Architecture for Data Flow Analysis to Support Reverse Engineering . - Proceedings of the 2nd International Workshop on the Theory and Practice of Algebraic Specifications, cop. 1997.
Похожие публикации