Лабораторный бп с индикацией на микроконтроллере. Цифровые индикаторы для лабораторного блока питания Индикатор для блока питания

Широкое распространение и небольшая цена современных интегральных стабилизаторов напряжения позволяет легко изготовить недорогой лабораторный блок питания (БП). Так популярный трёхвыводной регулируемый стабилизатор LM317T имеет встроенную эффективную защиту от перегрева и короткого замыкания (к.з.) и может работать в пределах регулировки выходного напряжения от 1,25 до 37 В при максимальном токе до 1,5 А, чего, как правило, более, чем достаточно для домашней лаборатории. Но на практике реализовать такой широкий диапазон по напряжению и току не просто, т.к. указанный выше максимальный выходной ток 1,5 А (при типовом значении тока к.з. 2,2 А) обеспечивается только при падении напряжения на стабилизаторе (т.е. при разнице между входным и выходным напряжениями) не более 15 В. При превышении этого значения происходит уменьшение максимально допустимого выходного тока (изготовитель в целях повышения надёжности работы стабилизатора схемотехнически ограничил максимальный выходной ток) вплоть до уровня всего 0,15 А (при типовом значении тока к.з. 0,4 А). Вторая проблема при большом диапазоне регулирования выходного напряжения заключается в чрезмерном повышении рассеиваемой мощности на стабилизаторе вплоть до превышения предельно допустимой (20 Вт для LM317T, например при входном напряжении 15 В, выходном 1,25 В и токе нагрузки 1,5 А), что приводит к необходимости применять для охлаждения очень большие радиаторы. Решение этих проблем возможно при введении ступенчато-плавной регулировки выходного напряжения и применении силового трансформатора с секционированной вторичной обмоткой, в качестве которого можно применить унифицированные трансформаторы серий ТПП, ТН.

Принципиальная схема рекомендуемого к повторению простого лабораторного БП представлена на рис.1. Он обеспечивает регулироку выходного напряжения в диапазоне от 1,25 до 21 В при максимальной токе 1,5 А и выполнен на основе LM317 в общем-то по почти типовой схеме. По входу установлен помехоподавляющий фильтр C1,L1,С2 (от компьютерных блоков питания), конденсатор С4 несколько улучшает фильтрацию ВЧ помех. Первичная обмотка трансформатора Т1 скоммутирована на сетевое напряжение 234 В, что уменьшает ток холостого хода и нагрев – в результате его не слышно даже под полной нагрузкой. Галетный переключатель SA2.2 ступенчато (по 5 В) переключает пределы плавной регулировки выходного напряжения, что в купе с синхронным переключением входного напряжения (SA2.1) позволяет ограничить максимальную рассеиваемую мощность LM317 на уровне примерно 10-12 Вт, тем самым повысить надёжность её работы и применить для охлаждения относительно малый радиатор с полезной площадью рассеивания порядка 150-200 кв. см. В простейшем случае это может быть алюминиевая пластина толщиной 2-3 мм размером 8..10см*10см.

Шаг переключения выходного напряжения, как и пределы регулировки переменным резистором, определяется падением напряжения на резисторах R1-R4 при протекании выходного тока DA1, стабилизированного на уровне примерно =1,25В/R5=1,25В/250=5 мА и при необходимости может быть подкорректирован подбором величины R5.

Для цифровой индикации выходного напряжения и тока применён готовый модуль китайского производства под кодовым названием «цифровой вольтметр-амперметр 100В 10 А». Такие модули с разными цветами и размерами сейчас широко доступны, недороги и обеспечивают вполне приличную точность. Информации по их подключению мало (в архиве то, что нашёл ), но она достаточно стандартна — на принципиальной схеме (рис.1) провода подключения обозначены цветом. Выпрямитель VD1,VD2 совместно с DA2 обеспечивают этот модуль стабилизированным напряжением питания +5 В.

Вместо ТПП-267 возможно применение любого унифицированного или другого трансформатора, имеющего несколько обмоток с напряжением порядка 5-8 в и допустимым током не менее 2 А. Собственно, в выборе силового трансформатора возможна большая степень свободы: напряжение вторичных обмоток не обязательно должно быть одинаковым (это учитывается установкой R2-R4 соответствующего сопротивления), лишь бы оно не превышало 8 В, да и число секций может быть другое — 2, 3,4, 5 и т.д.

Для примера на рис. 2 приведена схема БП с накальным трансформатором ТН46. Как видим, отличия минимальны – шаг ступеньки сделан по 6 В (R1-R4 оставлены без изменений, но ток, протекающий через них, увеличен до 6 мА путём уменьшения R5 до 200 Ом). При самостоятельном изготовлении помехоподавляющего фильтра конденсаторы С1,С2 могут металлобумажными, пленочными, металлоплёночными (из отечественных это, к примеру серии К40-хх, К7х-хх, импортные MKT,MKP и пр.) емкостью 10-22 нФ на рабочее напряжение не менее 400 В. Катушка L1 выполняется на ферритовом кольце диаметром 16-20мм с проницаемостью на менее 2000 сдвоенным проводом в хорошей изоляции (тонкий МГТФ, телефонная или «компьютерная» витая пара и пр.) – 25-30 витков. Диодный мостик может быть любой, допускающий обратное напряжение не менее 100В при токе более 2А, или набран из соответствующих диодов. В качестве VD1,VD2 применимы любые кремниевые диоды, допускающие обратное напряжение не менее 20В при токе более 0,3А. Монтаж БП несложен и может быть выполнен макетной плате. Внешний вид лабораторного БП приведён на фото.

Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в (II). Блок питания собран только из доступных деталей.

Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.

Схема блока питания показана на рис.1 ниже

Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел – регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.

А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.

Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.

Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.

Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 - R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения – подстроечным резистором R 14.


Рис. 2

Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 – 160вт, ток обмотки II – не менее 4 – 6А. Ток обмотки III – не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 – КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n (U вх. – U вых.), где S – площадь поверхности радиатора (см 2); I n – максимальный ток, потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).

Транзистор КТ825А – составной. Его можно заменить парой транзисторов, как показано на рисунке 2.

Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор - R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К - 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.

Печатная плата блока питания показана на рис.3 и рис.4.


Рис. 3


Рис. 4

Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.

Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место – резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм. Диоды VD 3 – VD 5 можно заменить на диоды КД522Б.

Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 - 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.

Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.


Рис. 5

После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и (b) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50мА – 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.

Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.


Рис. 6


Рис. 7

Литература:

Стабилизированный выпрямитель тока типа ТЭС 12 – 3 – НТ. г Горце Делчев. Болгария. 1984г.
А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
Ануфриев А. Сетевой блок пита­ ния для домашней лаборатории. - Радио, 1992, N 5, С.39-40.
Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ, РАДИО февраль 2004г. стр.39.
Бирюков С. Портативный цифровой мультиметр. - В помощь радиолюбителю, вып. 100 - ДОСААФ, 1988. с. 71-90.
Бирюков С. Цифровые устройства на МОП интегральных микросхемах. - М.: Радио и связь, 1990:1996 (второе издание).
Радио N 8 1998г. с.61-65
Digital Voltmeter

Радио №10 2004г. с.33

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
К схеме на Рис.1
DA1, DA2 Линейный регулятор

LM7805

2 В блокнот
VT1 Биполярный транзистор

КТ827А

1 В блокнот
VT2 Биполярный транзистор

КТ815Г

1 В блокнот
VT3 Биполярный транзистор

КТ3107А

1 В блокнот
VT4 Биполярный транзистор

КТ3102А

1 В блокнот
VT5-VT7 Биполярный транзистор

КТ315Д

3 В блокнот
VD1-VD4 Диодный мост

RS602

1 RS602, RS603 В блокнот
VD5-VD8 Диодный мост

КЦ402А

1 КЦ403-КЦ405 В блокнот
VD9 Светодиод

АЛ307Б

1 В блокнот
VD10 Диод

КД102А

1 В блокнот
VD11, VD12 Выпрямительный диод

1N4148

2 В блокнот
VS1 Тиристор & Симистор

КУ101Е

1 В блокнот
С1 10000мкФ 50В 1 В блокнот
С2, С3 Электролитический конденсатор 100мкФ 25В 2 В блокнот
С3, С4 Электролитический конденсатор 10мкФ 12В 2 В блокнот
С6, С7 Конденсатор 10 нФ 2 В блокнот
С8 Конденсатор 33 нФ 1 В блокнот
R1 Резистор

330 Ом

1 В блокнот
R2 Резистор

3 кОм

1 2Вт В блокнот
R3 Резистор

33 Ом

1 В блокнот
R4 Резистор

0.1 Ом

1 Проволочный В блокнот
R4 Резистор

2.4 кОм

1 В блокнот
R5 Резистор

150 Ом

1 В блокнот
R6 Резистор

2.2 кОм

1 В блокнот
R7 Подстроечный резистор 10 кОм 1 Многооборотный СП5-2 В блокнот
R8 Резистор

330 кОм

1 В блокнот
R9 Резистор

6.8 кОм

1 В блокнот
R10 Резистор

1 кОм

1 В блокнот
R11, R12 Резистор

5.1 кОм

2 В блокнот
R13 Переменный резистор 10кОм 1 ППБ3А В блокнот
R14 Подстроечный резистор 2.2кОм 1 Многооборотный СП5-2 В блокнот
T1 Трансформатор Понижающий 1 В блокнот
SW1 Тумблер На замыкание 1 В блокнот
FU1 Плавкая вставка на ток до 250мА 1 В блокнот
К схеме на Рис.2
Биполярный транзистор

КТ818А

1 В блокнот
Биполярный транзистор

КТ819А

1 В блокнот
Биполярный транзистор

КТ816А

2 В блокнот
R1, R2 Резистор

1 кОм

2 В блокнот
К схеме на Рис.5
Микросхема КР572ПВ2А 1 В блокнот
HG1-HG3 Светодиодный индикатор DA 56 – 11 SRWA 3

Представляю для вашего внимания проверенную схему хорошего лабораторного источника питания, опубликованного в журнале "Радио" №3, с максимальным напряжением 40 В и током до 10 А. Блок питания оснащён цифровым блоком индикации, с микроконтроллерным управлением. Схема БП показана на рисунке:

Описание работы устройства. Оптопара поддерживает падение напряжения на линейном стабилизаторе примерно 1,5 В. Если падение напряжения на микросхеме увеличивается (например, вследствие увеличения входного напряжения), светодиод оптопары и, соответственно, фототранзистор открываются. ШИ-контроллер выключается, закрывая коммутирующий транзистор. Напряжение на входе линейного стабилизатора уменьшится.

Для повышения стабильности резистор R3 размещают как можно ближе к микросхеме стабилизатора DA1. Дроссели L1, L2 — отрезки ферритовых трубок, надетых на выводы затворов полевых транзисторов VT1, VT3. Длина этих трубок равна примерно половине длины вывода. Дроссель L3 наматывают на двух сложенных вместе кольцевых магнитопроводах К36х25х7,5 из пермаллоя МП 140. Его обмотка содержит 45 витков, которые намотаны в два провода ПЭВ-2 диаметром 1 мм, уложенных равномерно по периметру магнитопровода. Транзистор IRF9540 допустимо заменить на IRF4905, а транзистор IRF1010N — на BUZ11, IRF540.

Если потребуется с выходным током, превышающим 7,5 А, необходимо добавить еще один стабилизатор DA5 параллельно DA1. Тогда максимальный ток нагрузки достигнет 15 А. В этом случае дроссель L3 наматывают жгутом, состоящим из четырех проводов ПЭВ-2 диаметром 1 мм, и увеличивают примерно в два раза емкость конденсаторов С1—СЗ. Резисторы R18, R19 подбирают по одинаковой степени нагрева микросхем DA1, DA5. ШИ-контроллер следует заменить другим, допускающим работу на более высокой частоте, например, КР1156ЕУ2.

Модуль цифрового измерения напряжения и тока лабораторного БП

Основа устройства - микроконтроллер PICI6F873. На микросхеме DA2 собран стабилизатор напряжения, которое используется и как образцовое для встроенного АЦП микроконтроллера DDI. Линии порта RA5 и RA4 запрограммированы как входы АЦП для измерения напряжения и тока соответственно, a RA3 - для управления полевым транзистором. Датчиком тока служит резистор R2, а датчиком напряжения — резистивный делитель R7 R8. Сигнал датчика тока усиливает ОУ DAI. 1. а ОУ DA1.2 использован как буферный усилитель.

Технические характеристики:

  • Измерение напряжения, В - 0..50.
  • Измерение тока, А - 0.05..9,99.
  • Пороги срабатывания защиты:
  • - по току. А - от 0,05 до 9.99.
  • - по напряжению. В - от 0,1 до 50.
  • Напряжение питания, В - 9...40.
  • Максимальный потребляемый ток, мА - 50.

В лаборатории каждого радиолюбителя должен быть лабораторный блок питания с возможностью регулировки выходного напряжения и тока, с защитой от коротких замыканий и индикацией «на борту». Идеальным решением может стать покупной блок питания. Однако многие, ради спортивного интереса, собирают блоки питания самостоятельно. Вот и у меня появилась необходимость в блоке питания. Решил собрать самостоятельно. В качестве основы выбрал набор Мастер Кит NK 037. Подробнее ознакомиться с набором можно на сайте masterkit.ru. В качестве индикации выбрал . Проверить автомобильные форсунки совсем не сложно. В статье - описывается электроника для стенда.

Технические характеристики блока питания:

  1. Выходное напряжение – 1.1 … 25В;
  2. Максимальный выходной ток – 4А;
  3. Защита от короткого замыкания;
  4. Цифровая индикация.

О схеме.

Принципиальная схема стабилизатора напряжения из набора NK037 показана на рисунке 1

Рисунок 1 – Принципиальная схема стабилизатора напряжения

Основа схемы – интегральный стабилизатор напряжения LM317. Схема набора NK037 не сильно отличается от типового включения микросхемы LM317 из даташита. Отличие выделено красным контуром. Транзистор VT2 – это токовый ключ, а на транзисторе VT1 собрана защита от превышения тока. Как показала практика, защита от превышения тока сразу не запускается и нуждается в наладке. Сам не стал возиться с этой защитой и просто ее исключил. На рисунке 2 показана схема стабилизатора напряжения с моими корректировками.

Рисунок 2 – Принципиальная схема стабилизатора напряжения + небольшие корректировки.

В набор NK037 не входит понижающий сетевой трансформатор, так что придется покупать отдельно. Напряжение на вторичной обмотке должно быть не менее 27-28В. Ну, а ток не менее 4А. Перечень всех компонентов, необходимых для сборки набора, приведен в таблице 1.

Таблица 1 – Перечень компонентов для стабилизатора напряжения.
Позиционное обозначение Наименование Аналог/замена
С1 Конденсатор электролитический – 4700мкФх50В
С2 Конденсатор керамический – 0,1мкФх50В
С3,С4 Конденсатор электролитический – 10мкФх50В
DA1 Интегральный стабилизатор LM317
G Диодный мост RS405 KBL06
R1 Резистор 5 Вт 0,22 Ом
R2 Резистор 2Вт 1,8…2,7 Ом
R3 Резистор 0,125Вт 4,7 кОм
R4 Резистор 0,125Вт 22 Ом
R5 Резистор 0,125Вт 220 Ом
VD Диод 1N4007
VT1 Транзистор КТ814
VT2 Транзистор КТ818

О печатной плате.

На рисунках 3, 4 показана печатная плата и размещение компонентов.

Рисунок 3 – Печатная плата стабилизатора напряжения.

Рисунок 4 – Размещение компонентов.

Внешний вид готовой платы показан на рисунке 5.

Рисунок 5 – Внешний вид готовой платы набора NK037.

Транзистор VT2, микросхема DA1 и переменный резистор с платы вынесены.

На рисунке 6 можно посмотреть внешний вид вольтметра на PIC16F676. Вольтметр будет использоваться для последующей индикации выходного напряжения.

Рисунок 6 – Внешний вид вольтметра на PIC16F676.

О сборке.

А теперь самое интересное - сборка лабораторного блока питания.

В качестве основы, для крепления двух плат и радиаторов, выбрал обычный ламинат толщиною около 8мм.

Рисунок 7 – Основа для двух плат и радиаторов.

Саму основу, чуть позже, буду крепить к металлическому корпусу, а пока, чтоб не мешались шляпки винтов, засверливаю их под потай.

Рисунок 8 – Засверливаем ламинат под потай.

Рисунок 9 – Засверливаем ламинат под потай.

Вот что получилось – рисунок 10.

Рисунок 10 – Две платы и радиаторы на основании из ламината.

В качестве сетевого понижающего трансформатора использовал трансформатор с тороидальным сердечником, который закрепил к корпусу при помощи мебельной петли и длинного винта. Под трансформатор наклеил двухсторонний скотч, исключающий скольжение. Рисунки 11,12.

Рисунок 11 – Крепление трансформатора к корпусу блока питания.

Рисунок 12 – Снизу трансформатора приклеен двухсторонний скотч.

Сам корпус состоит из двух г-образных пластин, которые винтами скрепляются между собою. Передняя и задняя панели сделаны из гетинакса.

В задней панели насверлил отверстий для вентиляции, а также отверстие для сетевого шнура и предохранителя - рисунок 13.

Рисунок 13 – Внешний вид задней панели.

Отверстия сверлил, используя шаблон - рисунок 14.

Рисунок 14 – Шаблон для задней панели.

Сетевой шнур к задней панели прикрепил, используя небольшой хомут - рисунок 15.

Рисунок 15 – Крепление сетевого шнура к задней панели.

На передней панели лабораторного блока питания закрепил индикатор, переменный резистор, клеммы для проводов питания, кнопку включения сети и светодиод. Рисунки 16-18.

Рисунок 16 – Крепление индикатора на передней панели.

Рисунок 17 – Крепление индикатора на передней панели.

Рисунок 18 – Крепление сетевого выключателя и светодиода.

Внешний вид передней панели - рисунок 19.

Рисунок 19 – Внешний вид передней панели лабораторного блока питания.

Ко дну корпуса прикрутил резиновые ножки, чтоб не скользил по столу – рисунок 20.

Рисунок 20 – Резиновые ножки, чтоб блок питания не скользил.

Фото готового лабораторного блока питания можно посмотреть на рисунках 21, 22

Рисунок 21 – Готовый лабораторный блок питания.

Рисунок 22 – Готовый лабораторный блок питания.

Интересное видео

В качестве заключения добавлю, что блок питания работает на Ура! Напряжение держит стабильно, кратковременная защита от короткого замыкания работает. Всем кто захочет повторить лабораторный блок питания с цифровой индикацией, желаю исправных компонентов!

Ардуино следит за напряжением на выходе, за током, и посредством ШИМ пинает силовой транзистор так, чтобы блок питания выдавал установленные значения.
Блок питания умеет выдавать напряжение от 1 до 16 вольт, обеспечивать ток 0.1 - 8 ампер (при нормальном источнике напряжения) уходить в защиту и ограничивать ток. То есть его можно использовать для зарядки аккумуляторов, но я не рискнул, да и у меня уже есть. Еще одна особенность этого странного блока питания в том, что он питается от двух напряжений. Основное напряжение должно подкрепляться вольтодобавкой от батарейки, или второго блока питания. Это нужно для корректной работы операционного усилителя. Я использовал ноутбучный блок питания 19в 4А в качестве основного, и зарядку 5в 350мА от какого-то телефона в качестве добавочного питания.

Сборка.

Сборку я решил начать с пайки основной платы с расчетом забить болт, если не заработает, так как начитался комментов от криворуких, как все у них дымит, взрывается и не работает, да и к тому же я внес некоторые изменения в схему.
Для изготовления платы я купил новый лазерный принтер, чтобы наконец то освоить ЛУТ, ранее рисовал платы маркером (), тот еще геморрой. Плата получилась со второго раза, потому что в первый раз я зачем-то отзеркалил плату, чего делать было не нужно.

Окончательный результат:



Пробный запуск обнадежил, все работало как надо



После удачного запуска я принялся курочить корпус.
Начал с самого габаритного - системы охлаждения силового транзистора. За основу взял кулер от ноутбука, вколхозил это дело в заднюю часть.

Натыкал на переднюю панель кнопок управления и лампочек. Здоровенная крутилка это энкодер со встроенной кнопкой. Используется для управления и настройки. Зеленая кнопка переключает режимы индикации на дисплее, прорезь снизу для разъема юсб, три лампочки (слева направо) сигнализируют о наличии напряжения на клеммах, активации защиты при перегрузе, и об ограничении тока. Разъем между клеммами для подключения дополнительных устройств. Я втыкаю туда сверлилку для плат и резалку для оргстекла с нихромовой струной.

Засунул все кишки в корпус, подсоединил провода




После контрольного включения и калибровки закрыл крышкой.

Фото собранного

Отверстия проделаны под радиатором стабилизатора lm7805, который нехило греется. Подсос воздуха через них решил проблему охлаждения этой детали

Сзади выхлопная труба, красная кнопка включения и разъем под сетевой кабель.


Прибор обладает кое-какой точностью, китайский мультиметр с ним согласен. Конечно калибровать самопальную махарайку по китайскому мультиметру и говорить о точности достаточно смешно. Несмотря на это прибору найдется место на моем столе, так как для моих целей его вполне достаточно

Некоторые тесты

Взаимодействие с программой. На ней в реальном времени отображается напряжение и ток в виде графиков, так же с помощью этой программы можно управлять блоком питания.

К блоку питания подключена 12-вольтовая лампа накаливания и амперметр. Внутренний амперметр после подстройки работает сносно

Измерим напряжение на клеммах. Великолепно.

В прошивке реализована ваттосчиталка. К блоку подключена все та же лампочка на 12 вольт, на цоколе которой написано «21W». Не самый паршивый результат.


Изделием доволен на все сто, поэтому и пишу обзор. Может кому-то из читателей нехватает такого блока питания.

О магазинах:
Чип-нн порадовал скоростью доставки, но ассортимент маловат на мой взгляд. Этакий интернет магазин, аналогичный арадиомагазину в среднем городке. Цены ниже, кое на что в разы.
Чип-дип… закупил там то, чего не было в чип-нн, иначе б не сунулся. розница дороговата, но все есть.

Похожие публикации