Радиоуправление 10 команд своими руками. Простейшая однокомандная схема радиоуправления моделями (3 транзистора)

Кто из начинающих радиолюбителей не хотел сделать какое-нибудь устройство с управлением по радиоканалу? Наверняка многие.

Давайте рассмотрим, как на базе готового радиомодуля собрать несложное радиоуправляемое реле.

В качестве приёмо-передатчика я использовал готовый модуль. Купил его на AliExpress вот у этого продавца .

Комплект состоит из пульта-передатчика на 4 команды (брелок), а также платы приёмника. Плата приёмника выполнена в виде отдельной печатной платы и не имеет исполнительных цепей. Их необходимо собрать самому.

Вот внешний вид.

Брелок добротный, приятный на ощупь, поставляется с батарейкой 12V (23А).

В брелоке встроена плата, на которой собрана довольно примитивная схема пульта-передатчика на транзисторах и шифраторе SC2262 (полный аналог PT2262). Смутило то, что на микросхеме в качестве маркировки указано SC2264, хотя из даташита известно, что дешифратор для PT2262 - это PT2272. Тут же на корпусе микросхемы чуть ниже основной маркировки указано SCT2262. Вот и думай, что к чему . Что ж, для Китая это не удивительно.

Передатчик работает в режиме амплитудной модуляции (АМ) на частоте 315 МГц.

Приёмник собран на небольшой печатной плате. Радиоприёмный тракт выполнен на двух SMD-транзисторах с маркировкой R25 - биполярных N-P-N транзисторах 2SC3356. На операционном усилителе LM358 реализован компаратор, а к его выходу подключен дешифратор SC2272-M4 (она же PT2272-M4).

Как работает устройство?

Суть работы сего устройства такова. При нажатии на одну из кнопок пульта A, B, C, D передаётся сигнал. Приёмник усиливает сигнал, а на выходах D0, D1, D2, D3 платы приёмника появляется напряжение 5 вольт. Вся загвоздка в том, что 5 вольт на выходе будет только пока нажата соответствующая кнопка на брелоке. Стоит отпустить кнопку на пульте - напряжение на выходе приёмника пропадёт. Упс. В таком случае не получиться сделать радиоуправляемое реле, которое бы срабатывало при кратковременном нажатии кнопки на брелоке и отключалось при повторном.

Связано это с тем, что существуют разные модификации микросхемы PT2272 (китайский аналог - SC2272). А в такие модули почему то ставят именно PT2272-M4, у которых нет фиксации напряжения на выходе.

А какие же бывают разновидности микросхемы PT2272?

    PT2272-M4 - 4 канала без фиксации. На выходе соответствующего канала +5V появляется только тогда, пока нажата кнопка на брелоке. Именно такая микросхема используется в купленном мной модуле.

    PT2272-L4 - 4 зависимых канала с фиксацией. Если включается один выход, то другие отключаются. Не совсем удобно, если необходимо независимо управлять разными реле.

    PT2272-T4 - 4 независимых канала с фиксацией. Самый лучший вариант для управления несколькими реле. Поскольку они независимы, то каждое может выполнять свою функцию независимо от работы других.

Что же сделать, чтобы реле срабатывало так, как нам нужно?

Тут есть несколько решений:

    Выдираем микросхему SC2272-M4 и вместо неё ставим такую же, но с индексом T4 (SC2272-T4). Теперь выходы будут работать независимо и с фиксацией. То есть можно будет включить/выключить любое из 4 реле. Реле будут включаться при нажатии кнопки, и выключаться при повторном нажатии на соответствующую кнопку.

    Дополняем схему триггером на К561ТМ2. Так как микросхема К561ТМ2 состоит из двух триггеров, то понадобиться 2 микросхемы. Тогда будет возможность управлять четырьмя реле.

    Используем микроконтроллер. Требует навыков программирования.

На радиорынке микросхему PT2272-T4 я не нашёл, а заказывать с Ali целую партию одинаковых микрух счёл нецелесообразным. Поэтому для сборки радиоуправляемого реле решил использовать второй вариант с триггером на К561ТМ2.

Схема достаточно проста (картинка кликабельна).

Вот реализация на макетной плате.

На макетке я быстренько собрал исполнительную цепь только для одного канала управления. Если взглянуть на схему, то можно увидеть, что они одинаковые. В качестве нагрузки на контакты реле нацепил красный светодиод через резистор в 1 кОм.

Наверняка заметили, что в макетку я воткнул готовый блок с реле. Его я вытащил из охранной сигнализации. Блок оказался очень удобным, так как на плате уже было распаяно само реле, штыревой разъём и защитный диод (это VD1-VD4 на схеме).

Пояснения к схеме.

Приёмный модуль.

Вывод VT - это вывод, на котором появляется напряжение 5 вольт, если был принят сигнал от передатчика. Я к нему подключил светодиод через сопротивление 300 Ом. Номинал резистора может быть от 270 до 560 Ом. Так указано в даташите на микросхему.

При нажатии на любую кнопку брелока светодиод, который мы подключили к выводу VT приёмника, будет кратковременно вспыхивать - это свидетельствует о приёме сигнала.

Выводы D0, D1, D2, D3; - это выходы микросхемы дешифратора PT2272-M4. С них мы будем снимать принятый сигнал. На этих выходах появляется напряжение +5V, если был принят сигнал от пульта управления (брелока). Именно к этим выводам подключаются исполнительные цепи. Кнопки A, B, C, D на пульте (брелоке) соответствуют выходам D0, D1, D2, D3.

На схеме приёмный модуль и триггеры запитываются напряжением +5V от интегрального стабилизатора 78L05. Цоколёвка стабилизатора 78L05 показана на рисунке.

Буферная цепь на D-триггере.

На микросхеме К561ТМ2 собран делитель частоты на два. На вход С приходят импульсы с приёмника, и D-триггер переключается в другое состояние до тех пор, пока на вход С не придёт второй импульс с приёмника. Получается очень удобно. Поскольку реле управляется с выхода триггера, то и оно будет включено или выключено до тех пор, пока не придёт следующий импульс.

Вместо микросхемы К561ТМ2 можно использовать К176ТМ2, К564ТМ2, 1КТМ2 (в металле с позолотой) или импортные аналоги CD4013, HEF4013, HСF4013. Каждая из этих микросхем состоит из двух D-триггеров. Их цоколёвка одинаковая, но вот корпуса могут быть разные, как, например, у 1КТМ2.

Исполнительная цепь.

В качестве силового ключа используется биполярный транзистор VT1. Я использовал КТ817, но подойдёт КТ815. Он управляет электромагнитным реле K1 на 12V. К контактам электромагнитного реле K1.1 можно подключать любую нагрузку. Это может быть лампа накаливания, светодиодная лента, электродвигатель, электромагнит замка и др.

Цоколёвка транзистора КТ817, КТ815.

Следует учесть, что мощность подключаемой к контактам реле нагрузки должна быть не меньше той мощности, на которую рассчитаны контакты самого реле.

Диоды VD1-VD4 служат защитой транзисторов VT1-VT4 от напряжения самоиндукции. В момент отключения реле в его обмотке возникает напряжение, которое противоположено по знаку тому, которое поступало на обмотку реле от транзистора. В результате транзистор может выйти из строя. А диоды по отношению к напряжению самоиндукции оказываются открытыми и "гасят" его. Тем самым они берегут наши транзисторы. Не забывайте про них!

Если хотите дополнить исполнительную цепь индикатором включения реле, то добавляем в схему светодиод и резистор на 1 кОм. Вот схема.

Теперь, когда на обмотку реле будет подано напряжение, включится светодиод HL1. Это будет указывать на то, что реле включено.

Вместо отдельных транзисторов в схеме можно использовать всего лишь одну микросхему с минимумом обвязки. Подойдёт микросхема ULN2003A . Отечественный аналог К1109КТ22 .

Это микросхема содержит 7 транзисторов Дарлингтона. Удобно то, что выводы входов и выходов расположены друг против друга, что облегчает разводку платы, да и обычное макетирование на беспаечной макетной плате.

Работает довольно просто. Подаём на вход IN1 напряжение +5V, составной транзистор открывается, и вывод OUT1 подключается к минусу питания. Тем самым на нагрузку подаётся напряжение питания. Нагрузкой может быть электромагнитное реле , электромотор, цепь из светодиодов, электромагнит и пр.

В даташите производитель микросхемы ULN2003A хвастается, что ток нагрузки каждого выхода может достигать 500 мА (0,5А), что собственно, не мало. Тут многие из нас умножат 0,5А на 7 выходов и получат суммарный ток в 3,5 ампера. Да, здорово! НО . Если микросхема и сможет прокачать через себя такой существенный ток, то на ней можно будет жарить шашлык...

На самом деле, если задействовать все выходы и пустить в нагрузку ток, то выжать без вреда для микросхемы можно будет около ~80 - 100мА на канал. Опс. Да, чудес не бывает.

Вот схема подключения ULN2003A к выходам триггера К561ТМ2.

Есть ещё одна широко распространённая микросхема, которую можно использовать - это ULN2803A.

У неё уже 8 входов/выходов. Я её выдрал с платы убитого промышленного контроллера и решил поэкспериментировать.

Схема подключения ULN2803A. Для индикации включения реле можно дополнить схему цепью из светодиода HL1 и резистора R1.

Вот так это выглядит на макетке.

Кстати, микросхемы ULN2003, ULN2803 допускают объединение выходов для увеличения максимально-допустимого выходного тока. Это может потребоваться, если нагрузка потребляет более 500 мА. Соответствующие входы также объединяются.

Вместо электромагнитного реле в схеме можно применить твёрдотельное реле (SSR - S olid S tate R elay). В таком случае, схему можно существенно упростить. Например, если применить твёрдотельное реле CPC1035N, то отпадает необходимость в питании устройства от 12 вольт. Достаточно будет 5-вольтового блока питания для питания всей схемы. Также отпадает необходимость в интегральном стабилизаторе напряжения DA1 (78L05) и конденсаторах С3, С4.

Вот так твёрдотельное реле CPC1035N подключается к триггеру на К561ТМ2.

Несмотря на свою миниатюрность, твёрдотельное реле CPC1035N может коммутировать переменное напряжение от 0 до 350 V, при токе нагрузки до 100 mA. Иногда этого достаточно, чтобы управлять маломощной нагрузкой.

Можно применить и отечественные твёрдотельные реле, я, например, экспериментировал с К293КП17Р.

Выдрал его с платы охранной сигнализации. В данной релюшке, кроме самого твёрдотельного реле, есть ещё и транзисторная оптопара. Её я не использовал - оставил выводы свободными. Вот схема подключения.

Возможности К293КП17Р весьма неплохие. Может коммутировать постоянное напряжение отрицательной и положительной полярности в пределах -230...230 V при токе нагрузки до 100 mA. А вот с переменным напряжением работать не может. То есть постоянное напряжение к выводам 8 - 9 можно подводить как угодно, не заботясь о полярности. Но вот переменное напряжение подводить не стоит.

Дальность работы.

Чтобы приёмный модуль надёжно принимал сигналы от пульта-передатчика, к контакту ANT на плате нужно припаять антенну. Желательно, чтобы длина антенны была равна четверть длины волны передатчика (то бишь λ/4). Так как передатчик брелока работает на частоте в 315 МГц, то по формуле длина антенны составит ~24 см. Вот расчёт.

Где f - частота (в Гц), следовательно 315 000 000 Гц (315 Мегагерц);

Скорость света С - 300 000 000 метров в секунду (м/c);

λ - длина волны в метрах (м).

Чтобы узнать, на какой частоте работает пульт-передатчик, вскрываем его и ищем на печатной плате фильтр на ПАВ (Поверхностно-акустических волнах). На нём обычно указана частота. В моём случае это 315 МГц.

При необходимости антенну можно и не припаивать, но дальность действия устройства сократится.

В качестве антенны можно применить телескопическую антенну от какого-нибудь неисправного радиоприёмника, магнитолы. Будет очень даже круто .

Дальность, при которой приёмник устойчиво принимает сигнал от брелока небольшое. Опытным путём я определил расстояние в 15 - 20 метров. С преградами это расстояние уменьшается, а вот при прямой видимости дальность будет в пределах 30 метров. Ожидать чего-то большего от такого простого устройства глупо, схемотехника его весьма проста.

Шифрование или "привязка" пульта к приёмнику.

Изначально, брелок и приёмный модуль незашифрованы. Иногда говорят, что не "привязаны".

Если купить и использовать два комплекта радиомодулей, то приёмник будет срабатывать от разных брелоков. Аналогично будет и с приёмным модулем. Два приёмных модуля будут срабатывать от одного брелока. Чтобы этого не происходило, применяется фиксированная кодировка. Если приглядеться, то на плате брелока и на плате приёмника есть места, где можно напаять перемычки.

Выводы от 1 до 8 у пары микросхем кодеров/декодеров (PT2262/PT2272 ) служат для установки кода. Если приглядется, то на плате пульта управления рядом с выводами 1 - 8 микросхемы есть лужёные полоски, а рядом с ними буквы H и L . Буква H - означает High ("высокий"), то есть высокий уровень.

Если паяльником накинуть перемычку от вывода микросхемы к полоске с пометкой H , то мы тем самым подадим высокий уровень напряжения в 5V на микросхему.

Буква L соответственно означает Low ("низкий"), то есть, накидывая перемычку c вывода микросхемы на полоску с буквой L, мы устанавливаем низкий уровень в 0 вольт на выводе микросхемы.

На печатной плате не указан нейтральный уровень - N . Это когда вывод микросхемы как бы "висит" в воздухе и ни к чему не подключен.

Таким образом, фиксированный код задаётся 3 уровнями (H, L, N). При использовании 8 выводов для установки кода получается 3 8 = 6561 возможных комбинаций! Если учесть, что четыре кнопки у пульта также участвуют в формировании кода, то возможных комбинаций становится ещё больше. В результате случайное срабатывание приёмника от чужого пульта с иной кодировкой становится маловероятным.

На плате приёмника пометок в виде букв L и H нет, но тут нет ничего сложного, так как полоска L подключена к минусовому проводу на плате. Как правило, минусовой или общий (GND) провод выполняется в виде обширного полигона и занимает на печатной плате большую площадь.

Полоска H подключается к цепям с напряжением в 5 вольт. Думаю понятно.

Я установил перемычки следующим образом. Теперь мой приёмник от другого пульта уже не сработает, он узнает только "свой" брелок. Естественно, распайка должна быть одинаковой как у приёмника, так и у пульта-передатчика.

Кстати, думаю, вы уже сообразили, что если потребуется управлять несколькими приёмниками от одного пульта, то просто распаиваем на них такую же комбинацию кодировки, как на пульте.

Стоит отметить, что фиксированный код не сложно взломать, поэтому не рекомендую использовать данные приёмо-передающие модули в устройствах доступа.

Устройство предназначено для управления 12 различными нагрузками. Причем одновременно и в любой комбинации допускается нажатия до 8 кнопок (PORTB) или 4 кнопок (PORTA). Оно может входить в состав, например, радиоуправляемого комплекса для авто и авиамоделей, управления гаражными воротами и т.п.

  • Скачать файл принципиальной схемы в формате lay

Работа приемной части предусмотрена в двух режимах. Режим реального времени и с фиксацией команд (зависит от положения перемычки S на плате приемника).Если перемычка убрана, команды зафиксируются. Если перемычка установлена, команды будут выполняться только в момент удержания соответствующей кнопки (кнопок).
Индикаторы исполнения команд - светодиоды. Разумеется, к соответствующим выводам процессора можно подключить например затворы мощных полевых или базы биполярных транзисторов через токоограничивающие резисторы.

Передатчик

Передающая часть состоит из задающего генератора и усилителя мощности.
ЗГ - классическая схема на ПАВ- резонаторе со 100 % амплитудной модуляцией.
УМ- стандартный с общим эммитером, нагруженный на четвертьволновый отрезок провода длиной 16 см через согласующую емкость.
Шифратор - PIC 16F628A , он осуществляет обработку информации о нажатых кнопках кодирование и посылку пачек управляющих импульсов а также включение светодиодного индикатора и усилителя мощности во время передачи кода.

Приемник

Сверхрегенератор. При номиналах указанных на схеме и исправных деталях обладает 100% повторяемостью.
Его настройка заключается лишь в раздвигании витков контурной катушки и подборе емкости связи с антенной.3 й вывод контроллера дешифратора служит для контроля прохождения сигнала при настройке (программно подключенный выход внутреннего компаратора).Контролировать можно с помощью обычного УНЧ. Дешифратор приемника - PIC 16F628A, он осуществляет декодирование и исполнение принятых команд. Система кодер - декодер может работать как по проводам так и с другими приемником
и передатчиком. Каждая посылка 0 и 1 со стороны кодера «закрашена» колебаниями 5,5 кГц для лучшей помехозащищенности + передача контрольной суммы.

Питание приемника обязательно от стабилизированного источника 5 вольт (на схеме не показан, в плате предусмотрен КРЕН 5 А +диод). Питание передатчика от 3,6 вольта но не больше 5,5 вольта (на плате предусмотрен КРЕН 5А+диод).
Картина нажатых кнопок в PORTB (выводы 6 - 13) на передающей части полностью отражается на приемной части в PORTB (выводы 6 - 13) соответственно. Картина нажатых кнопок в PORTA (3>2, 4> 15,15> 16, 16> 17).

Юный Техник Для умелых рук 1975 №5 нашем приложении № 3 за 1973 год была опубликована однокомандная аппаратура радиоуправления моделями. С тех пор в редакцию поступило много писем от читателей с просьбой повторить схему.
Редакция попросила руководителя радиокружка Дома пионеров Октябрьского района Москвы Эдуарда Афанасьевича Тарасова подготовить материал о радиоуправлении моделями.
В отличие от предыдущей конструкции данная аппаратура имеет некоторые преимущества:
1. Генератор ВЧ ее передатчика работает непрерывно. Это позволило повысить помехозащищенность аппаратуры.
2. Ее монтаж выполнен без применения фольгированного гетинакса.
3. На выходе приемника вместо довольно дефицитного электромагнитного реле используется мощный транзистор.
4. Контурные катушки выполнены на каркасах широко распространенных контуров телевизора "Рубин".

ПЕРЕДАТЧИК работает на частоте 28.2 МГц, частота модуляции примерно 2 кГц. Его принципиальная схема приведена на рисунке 1. Генератор высокой частоты собран на транзисторе T1, по схеме ёмкостной трёхточки. Его частота определяется контуром R2, С2, С4, С5. Отношение ёмкостей конденсаторов С4 и С5 определяет величину обратной связи. Связь с антенной выполнена по схеме П-контура. Это позволило упростить конструкцию передатчика и облегчить его налаживание. Величина этой связи зависит от соотношения емкости конденсатора С2 и включенных последовательно конденсаторов С4 и С5. Конденсатор С1 установлен для того, чтобы избежать срыва колебаний генератора при замыкании антенны на корпус передатчика.
Модулятор передатчика собран по схеме мультивибратора на транзисторах Т2 и Т3.

Органом управления, позволяющим включать и выключать исполнительный двигатель на модели, служит кнопка Кн1. Использовать для этой цели выключатель питания нельзя! И вот почему. Электродвигатели, установленные на модели, являются источником достаточно сильных радиопомех, особенно если учесть их близкое расположение к приёмнику.
А приемник сделан так, что его чувствительность к помехам снижается во время работы передатчика. Поэтому команды подаются включением или выключением модуляции.
Передатчик расположен в дюралюминиевом корпусе размером 110x45x150 мм.

Все детали передатчика, кроме органов управления, батарей питания и антенны, размещены на монтажной плате, сделанной из гетинакса толщиной 1,5 мм. Размеры платы 90x50 мм. Для монтажа плата расчерчивается штангенциркулем на квадраты со стороной 5 мм. В местах пересечения полученных линий для крепления деталей сверлятся отверстия диаметром 1 мм. Их размещение на монтажной плате и соединения между собой показаны на рисунке 2. Пунктирными линиями здесь обозначены соединения, сделанные с нижней стороны платы. Отверстия диаметром 4 мм, просверленные по углам, служат для крепления платы в корпусе передатчика.


Контурная катушка LI наматывается на пластмассовом каркасе диаметром 9 мм проводом ПЭВ-2 диаметром 0,51 мм. Каркас и сердечник могут быть использованы от контуров телевизора "Рубин".

Дроссель Др1 имеет индуктивность, равную примерно 8 мкГн. Можно использовать дроссель коррекции от телевизора или изготовить его самостоятельно. Для этого на резисторе МЛТ-0,5, сопротивление которого не менее 100 кОм, намотайте 90 витков провода ПЭВ-2 диаметром 0,1-0,12 мм.
Конденсаторы C1-С5 должны быть обязательно керамическими, а С6 и С7 могут быть и бумажными.
Монтажная плата разработана под резисторы МЛТ-0,5. Но могут быть использованы и резисторы МЛТ-0,125, УЛМ, ВС-0,12 и другие.
Транзистор Т1 может быть типа П403, П4І4-П416, ГТ308 с коэффициентом усиления не менее 50. А вот на месте Т2 и Т3 прекрасно работают и низкочастотные транзисторы П13-П16, МП39-МП42, но при этом коэффициент усиления у них тоже должен быть не менее 50.
Питается передатчик от двух соединенных последовательно батарей 3336Л. Если вы захотите уменьшить размеры передатчика, то используйте батареи "Крона".
Антенна передатчика имеет длину примерно 80 см и свинчивается из двух дюралевых прутков диаметром 4 мм с помощью трубочки, имеющей внутреннюю резьбу. Хорошо подходит для передатчика телескопическая антенна от транзисторного приемника.
Размещая монтажную плату в корпусе, следите, чтобы катушка L1 находилась на расстоянии не менее 8 мм от корпуса.
Правильно собранный из исправных деталей передатчик сразу начинает работать. Необходимо только проверить частоту передатчика и, если это необходимо, подстроить его сердечником катушки L1.
ПРИЁМНИК (см. рис. 3). Он собран целиком на транзисторах. Даже на выходе приёмника нет традиционного реле - его место занял мощный транзистор. Это позволило не только исключить достаточно дефицитную деталь, но и повысить надежность работы приёмника.

Его первый каскад собран по схеме сверхрегенератора с самопогашением, а высокочастотная часть этого каскада - по схеме индуктивной трёхточки. Цепочка R3, С5 определяет частоту гашения. В нашем приёмнике она равна примерно 100 кГц. Высокая частота гашения снижает коэффициент усиления каскада, ко зато позволяет отделить полезный сигнал от частоты гашения с помощью достаточно простых фильтров. Режим работы каскада устанавливается потенциометром R2.
Однокаскадный усилитель низкой частоты приёмника собран на транзисторе Т2. Сигнал на вход каскада подается через фильтр R4, Сб. Благодаря включению конденсатора C6 в цепь обратной связи его ёмкость удалось значительно снизить. С выхода УНЧ через резистор R7 сигнал подается на вход второго детектора, собранного на транзисторе Т3. Это позволило повысить входное сопротивление каскада.
Постоянная составляющая продетектированного сигнала, подаваемая на выходной транзистор Т5 через эмиттерный повторитель Т4, управляет работой исполнительного электродвигателя ЭД-1.
Для того чтобы повысить надежность работы схемы, питание приемника и электродвигателя производится от отдельных батарей.
Единственная самодельная деталь приемника - катушка L1. Она наматывается на пластмассовом каркасе диаметром 8 мм и содержит девять витков провода ПЭВ-2 диаметром 0,51 мм. Намотка производится виток к витку, а отвод делается от третьего витка. Отсчет ведется от того конца катушки, который подключен к минусовому проводу питания. Делается это так: сначала наматывают на каркас 3,5 витка и отмечают место, где должен быть сделан отвод. Затем осторожно острым ножом зачищают верхнюю поверхность провода. К зачищенному месту припаивают лужёный проводок диаметром 0,2-0,3 мм. Намотав катушку, проводок подсоединяют к соответствующему выводу. Остальные детали приемника стандартные.
Транзистор Т1 может быть типа П403, П414-П416, а Т2-Т4 - МП20Б. Коэффициент усиления транзисторов должен быть не менее 100. В качестве выходного транзистора Т5 могут быть использованы транзисторы П213-П217 с коэффициентом усиления не менее 25.
Конденсаторы, кроме электролитических, керамические. Ёмкости конденсаторов С1 и С7 могут быть увеличены до 33 нФ, а конденсатора С8, наоборот, снижена до 0,5 мкФ.
Увеличение ёмкости конденсатора С9 приводит к увеличению времени разгона и остановки двигателя.
Все постоянные резисторы типа МЛТ-0,5, но могут быть использованы и МЛТ-0,125, ВС-0,12. Подстроечный резистор R2 типа СП-3.
Конструктивно приемник смонтирован на гетинаксовой плате размером 50x120x1,5 мм. Подготовка платы приемника для монтажа производится так же, как и платы передатчика. Монтажная схема ее приведена на рисунке 4.
Настройка радиоприемника должна проводиться с подключенной антенной. Лучше всего с тон, с которой он будет работать на модели.
К эмиттеру транзистора Т1 через резистор в 20-30 кОм подключают осциллограф. Вращая ручку потенциометра R2, добиваются получения наиболее устойчивой амплитуды частоты гашения. Затем от генератора сигналов подают на вход приемника сигнал частотой 28,2 МГц, модулированный по амплитуде частотой 1000 Гц. Связь между генератором и приёмником должна быть по возможности слабой. Можно, например, расположить провод, идущий от генератора, на расстоянии 1-2 см от антенны приемника. Вращая сердечник L1, добиваются получения максимальной величины полезного сигнала. Он будет просматриваться в виде изменения амплитуды сигнала гашения.
Остальные каскады приемника настройки не требуют. Если для вращения электродвигателя ЭД-1 потребуется увеличить силу тока, замените транзистор Т5. Максимальное значение выходного тока 0,8-1А.
Э. ТАРАСОВ

Многие хотели собрать простую схему радиоуправления, но чтоб была многофункциональна и на достаточно большое расстояние. Я все-таки эту схему собрал, потратив на неё почти месяц. На платах дорожки рисовал от руки, так как принтер не пропечатывает такие тонкие. На фотографии приемника светодиоды с не подрезанными выводами - припаял их только для демонстрации работы радиоуправления. В дальнейшем их отпаяю и соберу радиоуправляемый самолет.

Схема аппаратуры радиоуправления состоит всего из двух микросхем: трансивера MRF49XA и микроконтроллера PIC16F628A. Детали в принципе доступные, но для меня проблемой был трансивер, пришлось через интернет заказывать. и платой качайте здесь. Подробнеее об устройстве:

MRF49XA - малогабаритный трансивер, имеющий возможность работать в трех частотных диапазонах.
- Низкочастотный диапазон: 430,24 - 439,75 Mгц (шаг 2,5 кГц).
- Высокочастотный диапазон А: 860,48 - 879,51 МГц (шаг 5 кГц).
- Высокочастотный диапазон Б: 900,72 - 929,27 МГц (шаг 7,5 кГц).
Границы диапазонов указаны при условии применения опорного кварца частотой 10 МГц.

Принципиальная схема передатчика:

В схеме TX довольно мало деталей. И она очень стабильная, более того даже не требует настройки, работает сразу после сборки. Дистанция (согласно источнику) около 200 метров.

Теперь к приемнику. Блок RX выполнен по аналогичной схеме, различия только в светодиодах, прошивках и кнопках. Параметры 10-ти командного блока радиоуправления:

Передатчик:
Мощность - 10 мВт
Напряжение питания 2,2 - 3,8 В (согласно даташиту на м/с, на практике нормально работает до 5 вольт).
Ток, потребляемый в режиме передачи - 25 мА.
Ток покоя - 25 мкА.
Скорость данных - 1кбит/сек.
Всегда передается целое количество пакетов данных.
Модуляция - FSK.
Помехоустойчивое кодирование, передача контрольной суммы.

Приемник:
Чувствительность - 0,7 мкВ.
Напряжение питания 2,2 - 3,8 В (согласно даташиту на микросхему, на практике нормально работает до 5 вольт).
Постоянный потребляемый ток - 12 мА.
Скорость данных до 2 кбит/сек. Ограничена программно.
Модуляция - FSK.
Помехоустойчивое кодирование, подсчет контрольной суммы при приеме.

Преимущества данной схемы

Возможность нажатия в любой комбинации любого количества кнопок передатчика одновременно. Приемник при этом отобразит светодиодами нажатые кнопки в реальном режиме. Говоря проще, пока нажата кнопка (или комбинация кнопок) на передающей части, на приемной части горит, соответствующий светодиод (или комбинация светодиодов).

Во время подачи питания на приемник и передатчик, они уходят в тест режим на 3 секунды. В это время ничего не работает, по истечению 3-х секунд обе схемы готовы к работе.

Кнопка (или комбинация кнопок) отпускается - соответсвующие светодиоды сразу же гаснут. Идеально подходит для радиоуправления различными игрушками - катерами, самолётами, автомобилями. Либо можно использовать, как блок дистанционного управления различными исполнительными устройствами на производстве.

На печатной плате передатчика кнопки расположены в один ряд, но я решил собрать что-то наподобии пульта на отдельной плате.

Питаются оба модуля от аккумуляторов 3,7В. У приемника, который потребляет заметно меньше тока, аккумулятор от электронной сигареты, у передатчика - от моего любимого телефона)) Схему, найденную на сайте вртп , собрал и испытал: [)еНиС

Обсудить статью РАДИОУПРАВЛЕНИЕ НА МИКРОКОНТРОЛЛЕРЕ

Похожие публикации